Mathematical Analysis1

 third levelFirst course

Mathematics department

College of Education for Pure Sciences

Dr. Nadia Nadhim

2021-2020

Axioms of real numbers

1. The axioms arithmetics
2. The axioms of ordered
3. The complete Axioms

* Let R be a real number and $a, b, c \in R$. Then

$$
A_{1}: \forall a, b, c \in R a+(b+c)=(a+b)+c .
$$

$A_{2}: a+b=b+a$
$A_{3}:$ for any $a \in R, \exists$! element $0 \in R$ s.t
$a+(-a)=-a+a=0$
A_{4} : Ther exists an element $0 \in R$, S.t
$a+0=0+a=a$
Then $(R,+)$ is a commutative group.
$A_{5}: a .(b . c)=(a . b) . c$
$A_{6}: a . b=b . a$
$A_{7}: \exists$! Element in $R(1 \in R)$ s.t $a .1=1 . a=a$
$A_{8}: \forall a \in R, \exists!a^{-1} \in R$, s.t $a . a^{-1}=a^{-1} . a=1$
Form $\boldsymbol{A}_{\mathbf{5}} \rightarrow \boldsymbol{A}_{\mathbf{8}} \cdot(\boldsymbol{R},$.$) commutive ring$
$A_{9}: a .(b+c)=(a . b)+(a . c)$
$A_{1} \rightarrow A_{9}(R,+,$.$) Is a field$

Def:

* Subtraction $a-b=a+(-b), \forall a, b \in R$
* Division $\quad a \div b=a . b^{-1} \ni b \neq 0$

The Axioms of order:

$$
\begin{aligned}
& A_{10}: a \leq b \text { or } b \leq a \\
& A_{11}: a \leq b \text { and } b \leq c \rightarrow a=b \\
& A_{12}: a \leq b \text { and } b \leq c \rightarrow a \leq c \\
& A_{13}: a \leq b, c \in R \rightarrow a+c \leq b+c \\
& A_{14}: a \leq b, c \text { is not negative } \rightarrow a . c<-b . c \\
& A_{1} \rightarrow A_{14},(R,+, ., \leq) \text { order field. }
\end{aligned}
$$

Remark:

$$
\begin{aligned}
& R^{+}=\{x \in R ; x>0\} \\
& R^{-}=\{x \in R ; x<0\}
\end{aligned}
$$

Propositions: Let $(R,+,$.$) be a field, then prove the following$

1. $\forall a, b, c \in R$, if $a+b=b+c$, then $a=c$
2. $\forall a, b, c \in R$, if $a . b=c . b$, then $a=c$
3. $\forall a, b \in R$, prove that:
4. $-(-a)=a$
5. $\left(a^{-1}\right)^{-1}=a$
6. $(-a)+(-b)=-(a+b)$
7. $(-a) \cdot b=-a, b$
8. if $a . b=0$ then either $a=0$ or $b=0$

Proof (5):
Let $a \neq 0$, T.P $b=0$
Since $a \neq 0$, then $\exists a^{-1} \in R$ s.t $a . a^{-1}=1$
$a^{-1}(a . b)=0$
$\left(a^{-1} \cdot a\right) \cdot b=0$

1. $b=0 \rightarrow b=0$

Let $b \neq 0$, T.P $a=0$
Since $b \neq 0$, then $\exists b^{-1} \in R$ s.t b. $b^{-1}=1$
(a.b) $b^{-1}=0$
a. $\left(b . b^{-1}\right)=0$
$a .1=0 \rightarrow a=0$

Absolute Value:

let $a \in R$, the absolute value of a is:

$$
\begin{aligned}
& |a|=\left\{\begin{array}{cc}
a & \text { if } a>0 \\
0 & \text { if } a=0 \\
-a & \text { if } a<0
\end{array}\right. \\
& |a|: R \rightarrow R^{+} \cup\{0\} \text { is the function of absolute value. }
\end{aligned}
$$

Properties of absolute value.
Theorem: let a be a real number, then

1. $|x|<a \leftrightarrow-a<x<a$
2. $|X|>a \leftrightarrow x>a$ or $x<-a$

Corollary: let $a \in R^{+}$and $b \in R$, then

1. $\mid x-b \leq a$ iff $b-a \leq x \leq b+a$
2. $|x-b| \geq a$ iff $x \geq b+a$ or $x \leq b-a$

Let $a, b \in R$ and k be areal number, then

1. $|a| \geq 0$
2. $|a|=0$ iff $a=0$
3. $a^{2}=|a|^{2}$
4. $|a b|=|a| \cdot|b|$
5. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
6. $|k a|=|k| \cdot|a|$

Example: $\forall a \in R, \sqrt{a^{2}}=|a|$
Proof:
If $a>0$ then $\sqrt{a^{2}}=a$
If $a<0$ then $\sqrt{a^{2}}=-a$
by def absolute value to a we have

$$
|a|=\left\{\begin{array}{l}
a=\sqrt{a^{2}} \text { if } a \geq 0 \\
-a=\sqrt{a^{2}} \text { if } a<0
\end{array}\right.
$$

$$
\text { وفي كلتا الحالتين يكون لدينا }|a|=\sqrt{a^{2}}
$$

The triangle inequality
Theorem: if $a, b \in R$, then $|a+b| \leq|a|+\mid b$
Proof:

$$
\begin{aligned}
|a+b|^{2}=(a+b)^{2} & \leq a^{2}+2 a b+b^{2} \\
& \leq|a|^{2}+2|a b|+|b|^{2} \\
& \leq(|a|+|b|)^{2}
\end{aligned}
$$

$$
\therefore|a+b| \leq|a|+|b|
$$

Corollary: if $a, b \in R$, then $|a-b| \geq|a|-|b|$

Def: let $S \subset R \mathrm{~S}$ is said to be bounded above if there is some real numbers m s.t $x \leq m$ $\forall x \in S, \mathrm{~m}$ is called upper bounded of S

LCH (3)

Proposition:
If $\emptyset \neq S \subset R$ and $\sup (S)=M$, then $\forall p<M \exists x \in S$ s.t $p<x \leq M$
i.e.: if $\sup (S)=M$ then $\forall \epsilon>0, \exists x \in S$ s.t $M-\epsilon<x \leq M$
proof:
let $\sup (S)=M$ then $\forall x \in S, x \leq M$
T.P $\forall x \in S, p<x$?

Suppose that $x \leq p, \forall x \in S$
$\rightarrow \mathrm{p}$ is upper bounded for S , but by hypothesis $p<M=\sup (S) \ldots \ldots \ldots . \mathrm{C}$!
$\therefore \exists x \in S \ni p<x \leq M$.

Theorem: The set N of natural numbers is unbounded above in R

Proof:

Suppose N is bounded above.
By completeness axiom
N has a supreme M
Let $\sup (N)=M$
From proposition above $\exists n \in N$ s.t $M-1<n<M$.
Then $M-1<n \rightarrow M<n+1$,
But $n+1 \in N$
And $n+1>M=\sup (N) \rightarrow C!$
Therefore, N is unbounded above

Theorem: Archimedan property
If $x \in R^{++}$then for any $y \in R$, there exists $n \in N$ s.t $n>y$

Def: let F a field, F is called Archimedean filed, if for any $x \in F, \exists n \in N$ s.t $n>x$ i.e.: N is abounded above in F

Ex:

1. R is Archimedean field
2. Q is Archimedean field
3. $s=\{a+b \sqrt{2}: a, b \in Q\}$ is Archimedean field

Theorem: Denseness property

Between any two distinct reals, there exists infinitely many rationales and irrationals

LCH (4)

Def: (irrational numbers Q’)
Let Q^{\prime} be a complement of Q in the real number R .
i.e.: $Q^{\prime}=R-Q$, we called is set of irrational numbers
remark: $R=Q \cup Q^{\prime}$
Theorem: prove that $\sqrt{2}$ is irrational number
i.e.: There are no rational numbers whose square is 2
i.e.: $\nexists x \in Q \ni x^{2}=2$
proof:
suppose $\sqrt{2}$ is rational number i.e. $\sqrt{2}=\frac{m}{n}$
So $2=\frac{m^{2}}{n^{2}}$, then $m^{2}=2 n^{2}$
Case 1:
m and n are odd.
Since m is odd $\rightarrow m^{2}$ is odd
Since n is odd $\rightarrow n^{2}$ is odd
But $2 n^{2}$ is even $\rightarrow m^{2}=2 n^{2} \rightarrow C$!
Case 2:
m is even and n is odd, then $m=2 p$
and $m^{2}=4 p^{2}, \rightarrow 4 p^{2}=2 n^{2} \rightarrow 2 p^{2}=n^{2} \rightarrow C!$
Case 3:
m is odd and n is even, then, since m is odd
$\rightarrow m^{2}$ is odd, and $2 n^{2}$ is even $\rightarrow m^{2}=2 n^{2} \rightarrow C!$
$\therefore \sqrt{2}$ is irrational number
Theorem: Q is not Complete field
Theorem: for every real $x>0$ and every integer $n>0$ there is one and only one positive real y such that $y^{n}=x$

$$
\text { i.e.: } \forall x>0, \forall n \in N, \exists!, y \in R^{+} \text {s. } t y=\sqrt[n]{x}
$$

Theorem: if $\frac{m}{n}$ and $\frac{p}{q}$ are rationales and $q \neq 0$ then $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is irrational number Proof:

Suppose $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is rational
Then there is $r, s \in Z, s \neq 0$ s.t $\frac{m}{n}+\sqrt{2} \frac{p}{q}=\frac{r}{s}$
So $\sqrt{2} \frac{p}{q}=\frac{r}{s}-\frac{m}{n} \rightarrow \sqrt{2}=\frac{p}{q}\left(\frac{r n-s m}{s n}\right) \in Q$
So $2=\left(\frac{q(n r-s m)}{p s n}\right)^{2} \rightarrow!$ with theorem: $\nexists x \in Q \ni x^{2}=2$
Theorem: Between any two distinct rationales there is an irrational number.

LCH (5)

Ex:

1. Prove $x^{2} \geq 0, \forall x \in R$
2. Let a, b be tow real s.t $a \leq b+\epsilon \forall \epsilon>0$ then $a \leq b$

Proof (2):
Suppose $a>b$
Then $a+a>b+a$
$\frac{2 a}{2}>\frac{b+a}{2}$
$a>\frac{b+a}{2}$
Take $\epsilon=\frac{a-b}{2}>0 \quad\left(\right.$ Since $a>b$, then $\left.a-b>0 \rightarrow \frac{a-b}{2}>0\right)$
$a \leq b+\epsilon \rightarrow a \leq b+\frac{a-b}{2}=\frac{2 b+a-b}{2}=\frac{a+b}{2}<a$
From (1) C!
$a \leq b$

Ex:

1. Q is order field $\left(A_{1} \rightarrow A_{14}\right)$
2. C is field but not order since: if $x=1 \rightarrow x=\sqrt{1} \rightarrow x^{2}=-1<0 \rightarrow C$!
since: $\left(x^{2} \geq 0, \forall x \in R\right)$

Def: let X be anon-empty set and $d: X \times X \rightarrow R^{+}$be a mapping. We say that order (X, d) is metric space if it is satisfying the following:

1. $d(x, d) \geq 0, \forall x, y \in X$
2. $d(x, y)=d(y, x)$
3. $d(x, z) \leq d(x, y)+d(y, z)$
4. $d(x, y)=0 \leftrightarrow x=y$

Not: d is called metric mapping $d(x, y)$ is a distance between x and y

Remark: A mapping $d: X \times X \rightarrow R^{+}$is called a pseudo metric for X iff d satisfies $(1,2,3)$ in the above definition and $d(x, x)=0, \forall x \in X$

Cauchy - Shwarz inequality
Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots b_{n}\right)$ be two tripe of complex number, then:

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

Minkowskis inequality

$$
\left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{\frac{1}{p}} \quad, p \geq 1
$$

Ex: if $X=R$ and $d(x, y)=|x-y|$, show that (X, d) is a metric space.
Solution:

1. $d(x, y)=|x-y| \geq 0 \quad$ by def. of Absolute value
2. $d(x, y)=|x-y|=|-(y-x)|=|y-x|=d(y, x)$
3. $d(x, z)=|x-z|=|x-y+y-z|$

$$
\begin{aligned}
& \leq|x-y|+|y-z| \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

4. $d(x, y)=0$ iff $x=y$

$$
\begin{aligned}
d(x, y)=0 & \text { iff }|x-y|=0 \\
& \text { iff } x-y=0 \\
& \text { iff } x=y
\end{aligned}
$$

$\therefore(X, d)$ is a metric space

Discrete metric space
Let $X \neq \emptyset$ and $d: X \times X \rightarrow R$ s.t

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

$\forall x, y$, show that (X, d) is metric space

Solution:

$$
\begin{aligned}
& \text { 1. } d(x, y) \geq 0, \forall x, y \in X \text { (by def. d) } \\
& \text { 2. } d(x, y)=d(y, x) \text { ? } \\
& \text { if } x=y \rightarrow d(x, y)=0=d(x, y) \\
& \text { if } x \neq y \rightarrow d(x, y)=1=d(y, x) \\
& \text { 3. Let } x, y, z \in X \text { T.P } d(x, y) \leq d(x, y)+d(y, z) \text { ? } \\
& \text { if } x=z \text { then } d(x, z)=0 \\
& \text { since } d(x, y) \geq 0 \text { and } d(y, z) \geq 0 \text { then } \\
& \qquad d(x, z) \leq d(x, y)+d(y, z) \\
& \text { if } x \neq z \text { then } d(x, z)=0 \\
& \text { since } d(x, z)=1 \text { and either } x \neq y \text { or } x \neq z, y=z \\
& \text { either: } d(x, z)=d(x, y)=d(y, z)=1 \\
& \text { or: } d(x, z)=d(x, y)=1 \text { and } d(y, z)=0 \\
& \text { then: } d(x, z) \leq d(x, y)+d(y, z) \\
& 1 \leq \quad 1 \quad+1 \\
& 1 \leq 1 \quad+0
\end{aligned}
$$

LCH (6)

Ex: show that (X, d) is pseudo metric space but not metric where $d: X \times X \rightarrow R, d(x, y)=\left|x^{2}-y^{2}\right|$, forall $x, y \in R$.
Solution:
Let $x, y, z, \in R$
1- $d(x, y)=\left|x^{2}-y^{2}\right| \geq 0$, by def Abs. Value
2- $d(x, y)=\left|x^{2}-y^{2}\right|=\left|-\left(y^{2}-x^{2}\right)\right|=\left|y^{2}-x^{2}\right|=d(y, x)$
3- $d(x, y)=\left|x^{2}-y^{2}\right|=\left|x^{2}-z^{2}+z^{2}-y^{2}\right| \leq\left|x^{2}-z^{2}\right|+\left|z^{2}-y^{2}\right|$
$\leq d(x, z)+d(z, y)$

4- $d(x, x)=\left|x^{2}-x^{2}\right|=0, \forall x \in R$
$\therefore(X, d)$ pseudo metric space but not metric space, since, if $d(x, y)=0 \rightarrow\left|x^{2}-y^{2}\right|=0 \rightarrow x^{2}-y^{2}=0 \rightarrow x^{2}=y^{2}$

$$
\rightarrow x=y
$$

ex: let $x=1, y=-1$ then $d(x, y)=d(1,-1)=\left|1^{2}-(-1)^{2}\right|=0$, but $1 \neq-1$

Def: let (X, d) be a metric space $S, T \subseteq X, p \in S$ then
1- The distance between p and S is

$$
d(p, S)=\inf \{d(p, x): x \in S\}
$$

2- The distance between S and T is $d(S, T)=\inf \{d(x, y): x \in S, y \in T\}$
3- Diameter of S is $d(S)=\sup \{d(x, y): x, y \in S\}$
4- S is called bounded, if $\exists M \in R^{++}$, s.t $d(x, y) \leq M, \forall x, y \in S$.

Def: let (X, d) be a metric space and $S \subseteq X, \mathrm{~S}$ is called open set, if $\forall x \in S, \exists r>0$ s.t $B(x, r) \subset S$

Ex: if $S=\emptyset$, then S is open set

$$
\text { If } x \in S \rightarrow \exists r>0 \text { s.t } B(x, r) \subset S
$$

$$
F \rightarrow F \quad \text { or } \quad T \quad: \quad T
$$

LCH (7)

If $S=X$, then S is open set

Solution:
Since all balls is contains in X

Any open interval is open set. But the convers is not true
Solution:
Let $x \in s \rightarrow x \in(a, b) \subseteq(a, b)=S$.
So. S is open set

Ex: Let $S=(-1,1) \cup(2,3)$
Let $x \in s$, then $x \in(-1,1)$ or $x \in(2,3)$
Then $x \in(-1,1) \subset S$ or $x \in(2,3) \subset S$
$\therefore \mathrm{S}$ is open set. But is not open interval

Any ball is open set.

Proof:
$\forall y \in B(x, r), \exists w>0$, s.t $B(y, w) \subset B(x, r)$?
Let $w=r-d(x, y)>0$
Let $Z \in B(y, w) \rightarrow d(z, y)<w$
$d(Z, y) \leq d(x, y)+d(y, z)$

$$
\leq d(x, y+w
$$

$$
=d(x, y)+r-d(x, y)
$$

$$
=r
$$

Then $Z \in B(x, r) \rightarrow B(y, w) \subset B(x, r)$
This is true for all y in $\mathrm{B}(\mathrm{x}, \mathrm{r})$
So $\mathrm{B}(\mathrm{x}, \mathrm{r})$ is open set
$S=\{x\}, x \in R$ is not open set
Since there is not open interval in S Containing x and Contained in S
i.e $((\forall r>0, \exists B(x, r)=(x-r, x+r) \subset S))$
$[a, b],[a, b),[a, \infty)$ and $(-\infty, b]$ are not open set
Proof:
If $S=[a, b]$,then S is not open set ?
Since, if $x=a \rightarrow \forall r>0, B(a, r)=(a-r, a+r) \not \subset[a, b]$
The intersection of any tow open set is open set
i.e ((the intersection of any finite family of open set is open))

Proof:
Let $A=\left\{S_{k}: S_{k}\right.$ is open set $\left.k=1,2, \ldots, n\right\}$
T.p $\bigcap_{k=1}^{n} S_{k}$ is open set

Let $x \in \bigcap_{k=1}^{n} S_{k} \rightarrow x \in S_{k}, \forall k$, but S_{k} is open set $\forall k$, then $\exists r_{k}>0$ s.t
$B\left(x, r_{k}\right) \subset S_{k}$
Let $r=\min \left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
Then $B(x, r) \subset S_{k}, \forall k$.
$\therefore B(x, r) \subset \bigcap_{k=1}^{n} S_{k}$, therefore $\bigcap_{k=1}^{\infty} S_{k}$ is open set.

Theorem: the infinite intersection of open sets is not necessary open set.

Ex: let $S_{n}=\left(x-\frac{1}{n}, x+\frac{1}{n}\right) \forall x \in R$, open interval.

$$
\begin{aligned}
& n=1 \rightarrow s_{1}=(x-1, x+1) \\
& n=2 \rightarrow S_{2}=\left(x-\frac{1}{2}, x+\frac{1}{2}\right) \\
& n=3 \rightarrow S_{3}=\left(x-\frac{1}{3}, x+\frac{1}{3}\right)
\end{aligned}
$$

When $n \rightarrow \infty \bigcap_{k=1}^{\infty} S_{k}=\{x\}$ is not open
Theorem: the union of any family (finite or infinite) - (countable or uncountable) of open set is open
Proof:
Let $A=\left\{S_{\alpha}, S_{\alpha}\right.$ is open set $\left.\alpha \in \wedge\right\}$
T.P: $\cup_{\alpha \in \wedge} S_{\alpha}$ is open set

Let $x \in \cup_{\alpha \in \wedge} S_{\alpha} \rightarrow \exists \alpha \in \wedge$ s.t $x \in S_{\alpha}$
Since S_{α} is open set $\rightarrow \exists \alpha>0$ s.t
$B\left(x, r_{\alpha}\right) \subset S_{\alpha}$, then $x \in B\left(x, r_{\alpha}\right) \subset S_{\alpha} \subset \cup_{\alpha \in \Lambda} S_{\alpha}$
This is true $\forall x \in \mathrm{U}_{\alpha \in \Lambda} S_{\alpha}$, therefore $\mathrm{U}_{\alpha \in \Lambda} S_{\alpha}$ is open set

Theorem: S is open iff S is the Union of balls

LCH (8)

Def: let X be anon-empty set and τ is a family of subsets of X , if τ satisfy the following
$1-\phi, X \in \tau$
2- If $G, H \in \tau \rightarrow G \cap H \in \tau$
3- If $\left\{G_{\lambda}\right\} \in \tau \rightarrow \cup_{\lambda \in \Lambda} G_{\lambda} \in \tau$
Then, the order pair (X, τ) is called topological Space.

Theorem: every metric space is topological space.

Proof:

Let (X, d) be a metric space and $\tau=$ the family of all open subsets of X, then
1- ϕ, X open sets $\rightarrow \phi, X \in \tau$
2- $G_{1}, G_{2} \in \tau \rightarrow G_{1}, G_{2}$ are open sets

$$
\rightarrow G_{1} \cap G_{2} \in \tau
$$

3- If $G_{\lambda} \in \tau, \lambda \in \Lambda \rightarrow \forall \lambda, G_{\lambda}$ open subset of X

$$
\begin{aligned}
& \rightarrow \bigcup_{\lambda \in \Lambda} G_{\lambda} \text { open set of } \\
& \rightarrow \cup_{\lambda \in \Lambda} G_{\lambda} \in \tau \\
& \therefore(X, \tau) \text { is a topological space }
\end{aligned}
$$

Def: let d_{1} and d_{2} be two metric mapping in the set X , then d_{1}, d_{2} are called Equivalent if every open set in $\left(X, d_{1}\right)$ is open in $\left(X, d_{2}\right)$ and Vice Versa

Def: let (X, d) be a metric space and $S \subseteq X, \mathrm{~S}$ is called closed set if S^{c} is open Set where $S^{c}=X-s$ (Complement of S)

Ex:
$1-S=X$ is closed set.
Solution:
Since $S^{c}=X^{c}=\phi$ open set
2- $S=\phi$ is closed set
Solution:
since $S^{c}=\phi^{c}=X$ is open set
3- $S=[a, b],[a, b), S=(-\infty, b]$ are closed set in R
Solution:
if $S=[a, b] \rightarrow S^{c}=(-\infty, a) \cup(b, \infty)$ open set $\rightarrow S$ is closed set
4- In R, $S=\{x\}$ is closed set
Since :
$S^{c}=(-\infty, x) \cup(x, \infty) \rightarrow S^{c}$ is open, S o S is closed set.
5- Any finite set in R is closed set
Solution:
let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq R$.
$S^{c}=\left(-\infty, x_{1}\right) \cup\left(x_{1}, x_{2}\right) \cup \ldots \cup\left(x_{n-1}, x_{n}\right) \cup\left(x_{n}, \infty\right)$
So, S^{c} is open, then S is closed set
6- If $S=N, S=Z$, then S is Closed set
Solution:
let $S=N$
then $S^{c}=(-\infty, 1) \cup(1,2) \cup(2,3) \ldots\left(\cup_{n=4}^{\infty}(n, n+1)\right)$
$\rightarrow S^{c}$ is open $\rightarrow S$ is closed
if $S=Z \rightarrow S^{c}=\left(\cup_{n=1}^{\infty}(-(n+1),-n)\right) \cup(-1,0) \cup(0,1) \cup\left(\cup_{n=1}^{\infty}(n, n+1)\right)$ S^{c} is open, then S is closed

LCH (9)

7- The Union of finite number of closed sets is closed.
Solution:
let $A=\left\{S_{i}, ; S_{i}\right.$ closed set in $\left.X, i=1,2, \ldots, n\right\}$
T.P: $\bigcup_{i=1}^{n} S_{i}$ is closed set
i.e. T.P $\left(\cup_{i=1}^{n} S_{i}\right)^{c}$ is open set

Since S_{i} is closed, $\forall i$ then S_{i}^{c} is open $\forall i$ and $\bigcap_{i=1}^{n} S_{i}^{c}$ is open
So, $\left(\cup_{i=1}^{n} S_{i}\right)^{c}$ is open
$\left(\left(\bigcup_{i=1}^{n} S_{i}\right)^{c}=\bigcap_{i=1}^{n} S_{i}^{c}\right)$
therefore $\cup_{i=1}^{n} S_{i}$ is closed.
Remark: the infinite union of closed sets is not necessary closed set
Ex: let $S_{n}=\left\{\left[\frac{-n}{n+1}, \frac{n}{n+1}\right]: n \in N\right\}, S_{n}$ is closed interval, Is $\bigcup_{n=1}^{\infty} S_{n}$ is closed?
Solution:
If $n=1 \rightarrow S_{1}=\left[\frac{-1}{2},, \frac{1}{2}\right]$
If $n=2 \rightarrow S_{2}=\left[\frac{-2}{3}, \frac{2}{3}\right]$

When $n \rightarrow \infty \Rightarrow \lim _{n \rightarrow \infty} \frac{ \pm n}{n+1}=\lim _{n \rightarrow \infty} \frac{\frac{ \pm n}{n}}{\frac{n}{n}+\frac{1}{n}}= \pm 1$
$\therefore \bigcup_{n=1}^{\infty} s_{n}=(-1,1)$ open set

Theorem: The infinite intersection of closed set S is closed?

Def: let X be a metric space and $S \subseteq X, p \in X, \mathrm{p}$ is called an accumulation point of S if every open set contain p , contains another point q s.t $p \neq q, q \in S$.
i.e.: p is a cc. point of S if $\forall U, \mathrm{U}$ is open set $p \in U$, then $U-P \cap S \neq \phi$

Remark: Since every open set is Union balls. So, we can define acc. Point as following: P is acc. Point of S , if $\forall r>0 B(p, r)-\{p\} \cap S \neq \phi$

* S^{\prime} is the closure of all acc. Point of S (Derived set)
* \bar{S} is the closure of S and $\bar{S}=S \cup S^{\prime}$
* P is not acc. Point, if $\exists U, U$ is open and $p \in U$
S.t $U-\{p\} \cap S=\phi$. (i.e. $\exists r>0, B(r, p)-\{p\} \cap S=\phi$

Ex: let $s=\{1,5\}$, find S^{\prime} and \bar{S}
Solution: TO find S^{\prime} there are some cases

LCH (10)

$x=1, x=5, x<1, x>5,1<x<5$
If $x=1 \rightarrow \mathrm{x}$ is not acc. Point since, $\exists r>0$
$B(x, r)-\{x\} \cap S=\emptyset$, when $r=1$
$B(1,1)-\{1\} \cap\{1,5\}=(0,2)-\{1\} \cap[1,5\}=\varnothing$
If $x=5 \rightarrow \mathrm{x}$ is not acc. Point, since $\exists r>0, B(x, r)-\{x\} \cap S=\emptyset$, when $r=1$
$\rightarrow B(5,1)-\{5\} \cap\{1,5\}=(4,6)-\{5\} \cap\{1,5\}=\varnothing$
If $x<1 \rightarrow \mathrm{x}$ are not acc. Point since $x \in(x-1,1)$ and $(x-1,1) \cap S=\emptyset$
If $x>5 \rightarrow x$ are not acc. Point, since $x \in(5, x+1)$ and $(5, x+1) \cap S=\emptyset$
If $1<x<5$ are not acc. Point since, $x \in(1,5)$ and $(1,5) \cap S=\varnothing$
So, S has no a acc. Point then $S^{\prime}=\emptyset$ and $\bar{S}=S \cup S^{\prime}=S \cup \emptyset=S$.
Let $s=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}=\left\{\frac{1}{n}, n=1,2,3, \ldots.\right\}$ show that $S^{\prime}=\{0\}$
If $S=(a, b)$, find S^{\prime}

Solution:

If $x=a \rightarrow x$ is acc. Point since $\forall r>0$,
$a \in B(0, r)=(a-r, a+r)$ and $B(a, r)-\{a\} \cap S \neq \emptyset$
If $x=b \rightarrow x$ is acc. Point, since $\forall r>0, b \in B(b, r)$
$B(b, r)=(b-r, b+r)$ and $B(b, r)-\{b\} \cap(a, b) \neq \emptyset$
If $a<x<b \rightarrow x$ are acc. Point since $\forall r>0$,
$x \in B(x, r)=(x-r, x+r)$ and $B(x, r)-\{x\} \cap S \neq \varnothing$
That is $(x-r, x+r)-\{x\} \cap(a, b) \neq \emptyset$
If $x<a \rightarrow x$ are not acc. Point since $x \in(x-1, a)$ and $(x-1, a) \cap S=\varnothing$ If $x>b \rightarrow x$ are not acc. Point, since $x \in(b, x+1)$ and $(b, x+1) \cap(a, b)=\emptyset$ $\therefore S^{\prime}=[a, b] \rightarrow \bar{S}=S \cup S^{\prime}=[a, b]$

LCH (11)

Def: A sub set A of a metric space X is said to be dense if $\bar{A}=X$ Ex: prove that $\bar{Q}=R$ (i.e., Q dense set in R)
Solution:
If $x \in R$, then x is acc. Point in Q .
Since any open interval Contain x Contains infinitely rational and irrationals
Then $Q^{\prime}=R$
So $\bar{Q}=Q \cup Q^{\prime}=Q \cup R=R$
Def: a metric space is called separable if it has a countable dense subset.
Ex: R separable since Q countable and $Q \subseteq R$, with Q dense in R
Theorem: let X be a metric space, $S \subseteq X$ then
1 - S is closed iff $S^{\prime} \subset X$
2- \bar{S} is closed set
3- $\bar{S}=S$ iff S closed set
4- \bar{S} is smallest closed set contains S .

Compact Space

Def: let (X, d) be a metric space, $\varnothing \neq S \subseteq X$, if the set $\left\{U_{\lambda}: U_{\lambda}\right.$ open set, $\left.\lambda \in \wedge\right\}$ is a family of open subsets of X such that $S \subseteq U_{\lambda \in \Lambda} U_{\lambda}$, then the family $\left\{U_{\lambda}\right\}$ is called open cover for S in X .

- If the family $\left\{U_{\lambda}\right\}$ is finite and $S \subseteq U_{\lambda \in \Lambda} U_{\lambda}$ then $\left\{U_{\lambda}\right\}$ is called finite cover.
- Let $\left\{U_{\lambda}\right\}$ and $\left\{U_{\alpha}\right\}$ be to open cover for S and $U_{\lambda} \in\left\{U_{\alpha}\right\} \forall \lambda$, then $\left\{U_{\lambda}\right\}$ is called subcover for $\left\{U_{\alpha}\right\}$
Def: let A be a subset of a metric space (X, d), A is called compact set if every open cover for A in X has a finite subcover.

LCH (12)

Exp: Any finite subset B of matric space (X, d) is compact set Ex: R is not compact

Ex : Any open interval $\mathrm{A}=(\mathrm{a}, \mathrm{b})$ is not compact

Ex : Any closed interval $\mathrm{A}=[\mathrm{a}, \mathrm{b}]$ is Compact.
Proof :
Since we can restrict any open cover for A to finite subcover such as :
Let $\epsilon>0, B=\{(a-\epsilon, a+\epsilon,(a, b),(b-\epsilon, b+\epsilon)\}$
\qquad

Theorem: ((Bolzano weir strass theorem))
In compact space X, every infinite subset S of X has at least one accumulation point.

Theorem : In compact metric space, every closed subset is compact.
Proof : X be a compact metric space, and A be a closed subset of X, then A^{c} is open. T.P A is compact.
Let $B=\left\{U_{\lambda}: U_{\lambda}\right.$ is open set in $\left.X, \forall \lambda \in{ }^{\wedge}\right\}$ be open cover for A .
Then $A \subseteq \cup_{\lambda \epsilon^{\wedge}} U_{\lambda}$
Sine $X=A \cup A^{c} \subseteq\left(\cup_{\lambda \in^{\wedge}} U_{\lambda}\right) \cup A^{c}$,
But A^{c} is open set then $U_{\lambda \in^{\wedge}} U_{\lambda} \cup A^{c}$ is open cover for X , since X is compact set, then there exists a finite member $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ such that

$$
X=A^{c} \cup\left(\bigcup_{i=1}^{n} U_{\lambda i}\right)
$$

Since that $X=A^{c} \cup\left(\cup_{i=1}^{n} U_{\lambda i}\right)$. Since $A \cap A^{c}=\emptyset$, then $A \subseteq \bigcup_{i=1}^{n} U_{\lambda i}$
$\Rightarrow \mathrm{B}$ has a finite subcover $\left\{U_{\lambda 1}, U_{\lambda 2}, \ldots \ldots, U_{\lambda n}\right\}$. For $\mathrm{A}, \Rightarrow \mathrm{A}$ is compact.

LCH (13)

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is closed

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is bounded

Remark: In metric space

$$
\text { Compact } \rightarrow \text { Closed }+ \text { bounded }
$$

Theorem: Let $\left\{I_{n}: n=1,2,3, \ldots\right\}$ be a family of closed interval
if $I_{n+1} \subset I_{n}, \forall n$, then $\cap_{n=1}^{\infty} I_{n}=\varnothing$
Theorem: (Hien-Bord Theorem)
Every closed and bounded subset of $R^{n}, n \geq 1$, is compact.

Chapter Three

Sequences in Metric Space

Definition: Let S be any set a function f whose domain is the set N and the range is S is Called a sequence in S .
i.e. $f: N \rightarrow S$, where $\forall n \in N, \exists x_{n} \in S$ s.t $f(n)=x_{n}$

1. $\left\langle\frac{1}{5 n}\right\rangle=\frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \ldots$
2. $\left\langle\frac{1}{n+1}\right\rangle=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
3. $\langle 4\rangle=4,4,4, \ldots$
4. $\langle n-3\rangle=-2,-1,0,1, \ldots$

Def: Let (X, d) be a metric space and $\left\langle X_{n}\right\rangle$ be seq. in X , then $\left\langle X_{n}\right\rangle$ is said to be converges to appoint in X , if $\forall \epsilon>0, \exists k \in N$ s.t d ? $\left(X_{n}, x\right)<\epsilon, \forall n>k$. We write $X_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} X_{n}=x, x$ is called

LCH (14)

A Limit point of $\left\langle X_{n}\right\rangle$.
If $\forall n>K$, does not Converge, them $\left\langle X_{n}\right\rangle$ is called divergent Sequence.
Not that: K depend on ϵ only.
التنير الهنسسي للتعريف التقارب

$$
\left(X_{n} \rightarrow x\right)
$$

يعني الكرة التي مركز ها x ونصف قطر ها ϵ تمتلك عدد غير منتهي من حدود او نقاط المتّابعة $\forall \epsilon>0, \exists k \in N$ s.td $\left(X_{n}, x\right)<\epsilon, \forall n>k \Rightarrow X_{n} \in B(x, \epsilon)$.
Ex: Let $\left\langle X_{n}\right\rangle=\langle 1\rangle$ constant seq. show that $\lim _{n \rightarrow \infty} X_{n}=1$
$<1>$ convergs to 1 since $\forall \epsilon>0$, $\exists k \in N$
s.t $d\left(X_{n}, x\right)=|1-1|=0<\epsilon, \forall n>k$

Ex: Let $<X_{n}>$ be a seq. defined by $X_{n}=\left\{\begin{array}{l}n \text { if } n \leq 50 \\ 3 \text { if } n \geq 50\end{array}\right.$.show that $\lim _{n \rightarrow \infty} X_{n}=3$
Solution:

$$
\begin{aligned}
& <X_{n} \geq 1,2,3, \ldots, 50,3,3,3, \ldots \\
& \forall \epsilon>0, \exists k=50 \text { s.t } d(X, x)=|3-3|=0<\epsilon
\end{aligned}
$$

Ex: Show that $\lim _{n \rightarrow} X_{n}=2$, where $<X_{n}>=\left\langle\frac{2 n-3}{n+1}\right\rangle$
Solution:

$$
\begin{aligned}
& \forall \epsilon>0 \text {, to find } K \in N \text { s.t } d\left(X_{n}, x\right)<\epsilon, \forall n>k ? \\
& \qquad \begin{aligned}
d\left(X_{n}, x\right)= & \left|\frac{2 n-3}{n+1}-2\right|=\left|\frac{2 n-3-2(n+1)}{n+1}\right|=\left|\frac{2 n-3-2 n-2}{n+1}\right| \\
& =\left|\frac{-5}{n+1}\right|=\frac{5}{n+1}
\end{aligned}
\end{aligned}
$$

$\forall \epsilon>0$, by Arch. Property $\rightarrow \exists K \in N \ni$
$\forall k>5 \rightarrow \frac{5}{\epsilon}<k$.
$\forall n>k \rightarrow n+1>k+1$ and $k+1>k, k>\frac{5}{\epsilon}$
$\Rightarrow n+1>k+1>k>\frac{5}{\epsilon}$

$$
\frac{1}{n+1}<\frac{\epsilon}{5}, \forall n>k
$$

Exc:

1. Let $\left\langle X_{n}\right\rangle=<\frac{2}{\sqrt{n}}>$, show that $\lim _{n \rightarrow \infty} X_{n}=0$
2. Let $\left\langle X_{n}\right\rangle=\left\langle\frac{5 n-4}{2-3 n}\right\rangle$, show that $\lim _{n \rightarrow \infty} X_{n}=-\frac{5}{3}$
3. Let $\left\langle X_{n}\right\rangle=\left\langle\frac{2-7 n}{1-5 n}\right\rangle$, show that $\lim _{n \rightarrow \infty} X_{n}=\frac{7}{5}$

Show that the following sequence are divergent

1. $\left\langle X_{n}\right\rangle=\langle\sqrt{n}\rangle$
2. $\left.\left\langle X_{n}\right\rangle=<(-1)^{n}\right\rangle$
3. $<X_{n}>3^{n}>$
4. $\left.\left\langle X_{n}\right\rangle=<\frac{n^{2}}{2 n-1}\right\rangle$

Theorem: If $<X_{n}>$ is convergent sequence in (X, d), then $<X_{n}>$ has a unique limit point.

Proof:
Suppose $<X_{n}>$ has two limit points x and y with $x \neq y$ and $d(x, y)=\epsilon$ Since $X_{n} \rightarrow y \Rightarrow \forall \epsilon>0, \exists k_{2} \in N s, t d(x, y)<\frac{\epsilon}{2}$
Let $k=\max \left\{k_{1}, k_{2}\right\}$
Since $d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$
$\Rightarrow d(x, y)<\epsilon, \forall \epsilon>0$
This true only when $d(x, y)=0 \Rightarrow x=y \rightarrow C$!
$\left.\therefore<X_{n}\right\rangle$ has a unique limit point.

LCH (15)

Definition: A seq. $<X_{n}>$ is called bounded the set $\left\{X_{n}: n \in N\right\}$ is bounded i.e. $<x_{n}>$ is bounded if $\exists m>0$ s.t $d\left(x_{n}, x_{m}\right) \leq M, \forall n, \forall m$. Ex:

1. $\left\langle\frac{(-1)^{n+1}}{n}\right\rangle=1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots$
$\left|x_{n}\right|=\left|\frac{(-1)^{n+1}}{n}\right|=\frac{1}{n} \leq 1 \Rightarrow<x_{n}>$ is bounded and $M=1$
2. $\left\langle 5+\frac{(-1)^{n+1}}{n}\right\rangle=6, \frac{9}{2}, \frac{16}{3}, \ldots$
$<x_{n} \geq 5+\frac{1}{n} \leq 5+1=6 \Rightarrow<x_{n}>$ is bounded and $M=6$
3. $\left.<n+(-1)^{n}\right\rangle=\left\{\begin{array}{l}\langle n-1\rangle, \text { if } n \text { is odd } \\ <n+1\rangle, \text { if } n \text { is even }\end{array}\right.$
4. $\left|x_{n}\right|=\left\{\begin{array}{l}|n-1| \geq 0 \\ |n+1| \geq 2\end{array}\right.$

Theorem: In metric space. Every convergent sequence is bounded.

Proof:

Let $\left\langle x_{n}\right\rangle$ be a convergent sequence in (X, d) and $x_{n} \rightarrow x$, to prove $\left\langle x_{n}\right\rangle$ is bounded

Since $x_{n} \rightarrow x \Rightarrow \forall \epsilon>0, \exists k \in N$ s.t $d\left(x_{n}, x\right)<\epsilon, \forall n>k$
That $\epsilon=1 \Longrightarrow d\left(x_{n}, x\right)<1, \forall n \in k$.
Let $r=\max \left\{1, d\left(x_{1}, x\right), d\left(x_{2}, x\right), \ldots, d\left(x_{n}, x\right)\right\}$
$\Rightarrow d\left(x_{n}, x\right)<r$
$\therefore<x_{n}>$ is bounded and $M=2 r$

Remark: The convers of above theorem is not true.

Ex: $\left\langle(-1)^{n}\right\rangle=-1,1,-1,1, \ldots$
$\left|x_{n}\right|=\left|(-1)^{n}\right|=1 \Rightarrow<x_{n}>$ is bounded and $M=1$ $<(-1)^{n}>$ is divergent?

Remake: If $<x_{n}>$ unbounded, then $<x_{n}>$ is divergent.
Proof:
Suppose that $<x_{n}>$ converged and unbounded sequence.
Since $<x_{n}>$ Convergent $\rightarrow<x_{n}>$ bounded by theorem (In metric space, every conv. Seq. is bounded) $\rightarrow \mathrm{C}$!, So $<x_{n}>$ unbounded is $<x_{n}>$ is divergent

Ex:

$$
\begin{aligned}
& ><x_{n}>=<\sqrt{n-1}>=0, \sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots \text { unbounded } \Rightarrow<x_{n}>\text { divergent } \\
& ><x_{n}>=<n^{2}-n>=0,2,6,11, \ldots \text { unbounded } \Rightarrow<x_{n}>\text { divergent }
\end{aligned}
$$

LCH (16)

Definition: Let $\left\langle x_{n}\right\rangle$ be a real sequence. Then it is called

- Non - decreasing. If $x_{n+1} \geq x_{n}, \forall n$
- Non - increasing. If $x_{n+1} \leq x_{n}, \forall n$.
- Not monotone. If it does not increasing and decreasing.

Ex:

$$
\begin{aligned}
* & <x_{n}>=<\frac{1}{\sqrt{n}}> \\
& x_{n}=\frac{1}{\sqrt{n}}, x_{n+1}=\frac{1}{\sqrt{n+1}} \\
& \forall n, n+1>n \Rightarrow \sqrt{n+1}>\sqrt{n} \rightarrow \frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{2}} \rightarrow x_{n+1} \leq x_{n}
\end{aligned}
$$

$\therefore<x_{n}>$ is non - increasing

* $<x_{n}>=<\frac{n}{n+1}>$
$x_{n}=\frac{n}{n+1}, x_{n+1}=\frac{n+1}{n+2}$
$x_{n+1}-x_{n}=\frac{n+1}{n+2}-\frac{n}{n+1}=\frac{(n+1)-n(n+2)}{(n+1)(n+2)}=\frac{n^{2}+2 n+1-n^{2}-2 n}{(n+1)(n+2)}=\frac{1}{(n+1)(n+2)}>0$
$\therefore x_{n+1}-x_{n}>0 \rightarrow x_{n+1}>x_{n}, \forall n, \therefore<x_{n}>$ non - decreasing
* $\left\langle x_{n}\right\rangle=<(-1)^{n}>$ not monotone
* $<x_{n}>=<\frac{(-1)^{n}}{\sin (n)}>$ not monotone.
* $<x_{n}>=<(-5)^{n}>$ not monotone.

Theorem: Every monotone bounded real seq. is convergent
Ex: $\left\langle x_{n}>=\left\langle\frac{(-1)^{n}}{n}\right\rangle>0\right.$
$<x_{n}>$ Convergent seq. but not monotone.
Ex: Show that $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}$ is convergent.

Theorem: Let (X, d) be a metric space and $S \subseteq X$:
i. If $\left\langle x_{n}\right\rangle$ seq. in S and $x_{n} \rightarrow x$ then $x \in S$ or $x \in S^{\prime}$
ii. If $x \in S$ or $x \in S^{\prime}$, then there exists a sequence $<x_{n}>$ in S s.t $x_{n} \rightarrow x$

Definition: The sequence $<x_{n}>$ is a sub sequence of $\left\langle x_{n}\right\rangle$, if $<m>$ is increasing sequence in N .

Ex: find a sub Seq. of the following seq.

1. $\left\langle x_{n}\right\rangle=\langle\sqrt{n}\rangle$

Solution:

$$
<\sqrt{n}>=\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots
$$

LEC (17)

Let $<m>=<2 n>$ increasing Seq. in N, the Sequence is

$$
<X m>=<\sqrt{2 n}>=\sqrt{2}, \sqrt{4}, \sqrt{6}, \ldots
$$

Let $\langle m>=<n+3>$ increasing seq in N , the sub seq is

$$
\langle m\rangle=\langle\sqrt{n+3}\rangle=\sqrt{4}, \sqrt{5}, \sqrt{6}, \ldots
$$

Theorem: Let $\left\langle x_{n}\right\rangle$ be a convergent Seq and $\lim _{n \rightarrow \infty} X_{n}=x$ then the sub seq $<X_{n m}>$ also conv. To x, where $n \rightarrow \infty$

Proof:

Since $x_{n} \rightarrow x, \forall \epsilon>0, \exists k \in N$ s.t $d\left(x_{n}, x\right)<\epsilon, \forall n>k$
Choose $n r>k$, then $\forall m>r \rightarrow n m>n r>k$
$\Rightarrow d\left(x_{n m}, x\right)<\epsilon, \forall n m>k$
$\Rightarrow<x_{n m}>\rightarrow x$.
Definition: Let (X, d) be a metrices space and $\left.<x_{n}\right\rangle$ be a seq. in X we say that $\left\langle x_{n}\right\rangle$ is a principle. (Caushy) seq. if $\forall \epsilon>0, \exists k \in N$ s.t $d\left(x_{n}, x_{m}\right)<\epsilon, \forall n, m>k$.

Ex: prove that $\left\langle\frac{1}{n}\right\rangle$ is Caushy seq in R ?
Solution: $\forall \epsilon>0$, to find $k \in N$ s.t $d\left(x_{n}, x_{m}\right)<\epsilon, \forall n, m>k, \forall n, m>k$.
Let $m>n \rightarrow d\left(x_{n}, x_{m}\right)=\left|\frac{1}{n}-\frac{1}{m}\right| \leq\left|\frac{1}{n}\right|+\left|\frac{1}{m}\right|<\frac{1}{n}+\frac{1}{n}=\frac{2}{n}$
Since $\epsilon>0$ (by Arch. Prop) $\rightarrow \exists k \in N$ s.t
$k \epsilon>2 \rightarrow \frac{2}{k}<\epsilon$
$\forall n>k, d\left(x_{n}, x_{m}\right)=\left|x_{n}-x_{m}\right|<\frac{2}{n}<\epsilon, \forall n, m>k \rightarrow<X_{n}>$ is Caushy seq.
Theorem: I metric space (X, d), every Convergent seq. is Caushy.
Remark: The Converse of the above theorem. Is not true by the following example. Ex: Let $X=I R^{++}$positive numbers $d(x, y)=|x-y|, \forall x, y \in R^{++}, \forall n>k$. $\left\langle x_{n}\right\rangle=\left\langle\frac{1}{n}\right\rangle$ is Caushy seq.
But $\frac{1}{n} \rightarrow 0 \notin R^{++}$
$\left.\therefore<\frac{1}{n}\right\rangle$ is not Conv
Theorem: In metric Space (x, d) every Caushy seq. is bounded.
Ex: Let $\left\langle x_{n}\right\rangle=(-1)^{n}$ be a seq.
$\left.<x_{n}\right\rangle$ is bounded seq, but not Caushy Seq

Since $d(-1,1)=1<\epsilon, \forall \epsilon>0$
If $\epsilon=\frac{1}{2} \rightarrow 2<\frac{1}{2} \rightarrow C$!
Theorem: For any real number r, \exists rational Caushy $\operatorname{Seq}<x_{n}>$ Conv to r.

LEC (18)

Definition: $\operatorname{Let}(X, d)$ be a metric space we say that X is Compete. If every Cauchy Seq. In X coverage to a point in X .
i.e.: X is complete. If $\forall<X_{n}>$ Cauchy Seq. $\rightarrow \exists \bar{x} \in X$ s.t $X_{n} \rightarrow X$.

Theorem: Cantor's theorem for Nested sets.

Proof:

Let (X, d) be a Complete matric Space and $\left\langle E_{n}\right\rangle$ be a seq of closed bounded Subset of X such that $E_{1} \supset E_{2} \supset \cdots E_{n} \supset E_{n+1} \forall n$ and the Sequence of Positive numbers $<\operatorname{daim} E_{n}>\rightarrow 0$, then $\cap E_{n}=$ Singleton point

Remark: The condition of closed sets of Cantor's theorem is necessary.
Ex: Let $E_{n}=\left(0, \frac{1}{n}\right)$ be the open intervals, $E_{n+1} \subset E_{n}$, and $\operatorname{daim}\left(E_{n}\right)=\frac{1}{n} \rightarrow 0, \forall n$ E_{n} is bounded and not closed. Prove that $\cap E_{n}=\varnothing$
Proof:
Suppose $\cap E_{n} \neq \emptyset \rightarrow \exists r \in E_{n}$ s.t
$r \in\left(0, \frac{1}{n}\right), \forall n$
Since $r>0$, by Arch.pvop , $\exists k \in N$ s.t
$k r>1 \rightarrow \frac{1}{k}<r \rightarrow C$!
$\rightarrow \cap E_{n}=\emptyset$
Corollary: Let $< \pm n>$ be aseq of closed intervals, $I_{n}=\left[a_{n}, b_{n}\right]$ such that

1. $I_{n} \supset I_{n+1}$
2. $\lim _{n \rightarrow \infty}\left|I_{n}\right|=0$, then $\cap I_{n}=$ singleton Point

Theorem: R^{n} is Complete metric Space, $n \geq 1$
i.e.: (Every Cauchy sequence in R^{n} is Convergent)

Theorem: Let $<X_{n}>,<Y_{n}>$ and $<Z_{n}>$ real Sequence s.t $\forall n, X_{n} \leq Y_{n} \leq Z_{n}$ and $\lim _{n \rightarrow \infty} X_{n}=\lim _{n \rightarrow \infty} Z_{n}=a$ then $\lim _{n \rightarrow \infty} Y_{n}=a$

Theorem: let $<X_{n}>$ be a real sequence such that $\left\langle X_{n}>\right.$ Converge to 0 and $X_{n} \geq 0, p>0$ then $<X_{n}^{p}>$ converges to 0
Proof:
$<X_{n}^{p}>=x_{1}^{p}, x_{2}^{P}, x_{3}^{p}, \ldots$
Since $<X_{n}>\rightarrow 0 \rightarrow \forall \epsilon>0, \exists k \in N$ s.t
$\left|X_{n-0}\right|=\left|X_{n}\right|<\epsilon^{p}, \forall n>k$ and
$\left|X_{n} \cdot X_{n} \ldots X_{n}\right|=\left|X_{n}\right|\left|X_{n}\right| \ldots .\left|X_{n}\right|=\left|X_{n}\right|^{p}<\left(\epsilon^{\frac{1}{p}}\right)^{p}, \forall n>k$
$<X_{n}^{p}>\rightarrow 0$.

Chapter four

Infinite Series

Def: Let $\left\langle x_{n}\right\rangle$ be a real seq the series of the form, if $x_{1}+x_{2}$ then itis Called infinite series, and it is written as $\sum_{n=1}^{\infty} x_{n}$.

If the series of the form $x_{1}+x_{2}+\cdots+x_{n}$, then itis Called finite Series.and written as $\sum_{k=1}^{n} x_{k}$ Def: Let $\sum_{n=1}^{\infty}$ an be a finite series, the seq $\left\langle S_{n}\right\rangle$ is called the sequence of Partial sums of $\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}$
where $S_{1}=a_{1}$

$$
\begin{aligned}
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}-a_{2}+a_{3} \\
& \vdots \\
& S_{n}=a_{1+} a_{2}+\cdots+a_{n}
\end{aligned}
$$

Def:
let $\sum_{n=1}^{\infty} a_{n}$ be infinite series, then it is said toble

1. Converge, if $\left\langle S_{n}\right\rangle$ converge
2. diverge, if $\left\langle s_{n}\right\rangle$ diverge.
3. If $\langle\mathrm{Sn}\rangle$ Converge to b. then $\sum_{n=1}^{\infty} a_{n}=S_{n}$.

Example:
let $a_{n}=1, \forall n$, then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n}=1+1+1+\cdots \\
& S_{1}=a_{1}=1 \\
& S_{2}=a_{1}+a_{2}=1+1=2 \\
& S_{3}=a_{1}+a_{2}+a_{3}=1+1+1=3
\end{aligned}
$$

$S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}=1+1+1+\cdots+1=n$
The seq of partial sum is $\left\langle S_{n}\right\rangle=\langle n\rangle$ is divergent Since it is unbounded $\Rightarrow \sum_{n=1}^{5}$ an is diverge.

Example: let $\sum_{n=1}^{\infty} a_{n}=3-3+3-3+\cdots$

$$
\begin{aligned}
& S_{1}=a_{1}=3 \\
& S_{2}=a_{1}+a_{2}=3-3=0 \\
& S_{3}=\mathrm{a}_{1}+\mathrm{a}_{2}+a_{3}=3-3+3=3 \\
& \vdots \\
& S_{n}=a_{1}+a_{2}+\cdots+a_{n}= \begin{cases}3 & , \text { if } n \text { odd } \\
0, \text { if } n \text { even }\end{cases}
\end{aligned}
$$

The Sequence of partial Sum $\left\langle S_{n}\right\rangle$ is divergent
$\therefore \sum_{n=1}^{\infty} a_{n}$ is divergent

Example:
Let: $\sum_{n}^{\infty} a_{n}=2+4+2+4+24$
$n=1$
$S_{1}=a_{1}=2$
$S_{2}=a_{1}+a_{2}=2+4=6$
$S_{3}=a_{1}+a_{2}+a_{3}=2+4+2=8$
Sn $=a_{1}+a_{2}+a_{3}+a_{4}=2+4+2+4+\cdots=$?
The sequence of partial sums $\left\langle S_{n}\right\rangle$ is unbownded, then $\left\langle s_{n}\right\rangle$ is diverg ent so $\sum_{n=1}^{\infty} a_{n}$ is diverge

Exercises

let $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Harmonic Series

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \text { divergent }
$$

proof:
$S_{1}=a_{1}=1$
$s_{2}=a_{1}+a_{2}=1+\frac{1}{2}$
$S_{3}=a+a_{2}+a_{3}=1+\frac{1}{2}+\frac{1}{3}$
$S_{n}=a_{1}+a_{2}+\cdots+a_{n-1}+\frac{1}{2}+\cdots+\frac{1}{n}$
$S_{n+1}=a_{1}+a_{2}+\cdots+a_{n}-a_{n-1}=1+\frac{1}{2}+\cdots+\frac{1}{n}+\frac{1}{n+1}$
$S_{n+n}=\frac{1}{2 n}+\frac{1}{2}+\frac{1}{3}+\cdots \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}$
let $m=2 n$

$$
\begin{aligned}
\left(S_{m}-S_{n}\right) & =\left|\left(1+\frac{1}{2}+\cdots+\frac{1}{n}+\cdots+\frac{1}{2 n}\right)-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\right| \\
& =\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \\
& >\frac{1}{2 n}+\frac{1}{2 n}+\cdots+\frac{1}{2 n} \\
& =n \cdot \frac{1}{2 n}=\frac{1}{2}
\end{aligned}
$$

If $\epsilon=\frac{1}{2}$, then $\left|S_{m}-S_{n}\right|>\epsilon$
$\therefore\left\langle S_{n}\right\rangle$ is not Caushy sequence $\Rightarrow\left\langle S_{n}\right\rangle$ is not Convergent.
So $\sum_{n=1}^{2} a_{n}$ is diverge.

Geometric Series

$\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots$
where a $>0, r$ is called the base of Series. the sequence of partial, Sum is

$$
s n=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}
$$

(1) if $|r|=1$
$\therefore S_{n}=a+a^{-1}+a+\cdots+a=n \cdot a$
$\left\langle S_{n}\right\rangle=\left\langle n_{a}\right\rangle$ diverg $\Rightarrow \sum_{n=1}^{\infty} a r^{n-1}$ diverge.
(2) if $|r|>1$
$S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}$
$r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}$
$\rightarrow S_{n}-r S_{n}=a-a r^{n}$
$S_{n}(1-r)=a\left(1-r^{n}\right)$
$\therefore S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
When $n \rightarrow \infty \Rightarrow \lim _{n \rightarrow \infty} S_{n}=\lim \frac{a\left(1-r^{n}\right)}{(1-r)}$

$$
=\frac{a(1-0)}{1-r}=\frac{a}{1-r}
$$

$\therefore \sum a r^{n-1}=\frac{a}{1-r}$.Converge

(3) if $|r|>1$
$s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
when $n \rightarrow \infty ; r^{n}=\mp \infty \Rightarrow S_{n} \rightarrow \infty$
\therefore Sn diverge.
$\therefore \sum_{n=1}^{\infty} a r^{n-1}$ diverge.

$$
\begin{array}{r}
\sum_{n=1}^{\infty} a r^{n-1}= \begin{cases}\text { divenge } & \text { if }|\mathrm{r}|>1 \\
\text { Ganverge } & \text { if }|\mathrm{r}|<1\end{cases} \\
=\sum_{n=1}^{\infty} a r^{n-1}-\frac{a}{1-r}
\end{array}
$$

Example
Tet $\sum_{n=1}^{\infty} a_{n}=1+\frac{5}{2}+\left(\frac{5}{2}\right)^{2}+\left(\frac{5}{2}\right)^{3}+\cdots \quad \begin{gathered}\text { Geometric } \\ \text { series. }\end{gathered}$

$$
a=1, v=\frac{5}{2} \Rightarrow|r|=\left|\frac{5}{2}\right|=\frac{5}{2}>1
$$

$\therefore \sum_{n=1}^{\infty}$ an divenge:
$\sum_{\sum=1}^{\infty} a_{n=1}=1-\frac{3}{4}+\frac{9}{16} \frac{27}{64}+\cdots$ Geometric Series.

$$
\sum_{n=1}^{\infty} a r^{n-1}=1+\left(\frac{-3}{4}\right)+\left(\frac{-3}{4}\right)^{2}+\left(\frac{-3}{4}\right)^{3}+\cdots
$$

$$
\begin{aligned}
& a=1, v=\frac{3}{4} \Rightarrow \\
& |r|=\left|-\frac{3}{4}\right|=\frac{3}{4}<1 \\
& \therefore \sum_{n=1}^{\infty} a_{n} \text { is Converger and } \\
& \sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}=\frac{15}{1+\frac{3}{4}}=\frac{1}{\frac{7}{4}}=\frac{4}{7}
\end{aligned}
$$

Theorem:
If $\sum_{n=1}^{\infty}$ an Convergent, them $\lim _{n \rightarrow \infty} a_{n}=0$ (that is, $\forall \in>0, \exists k \in N$, s.t $\left|a_{n}-0\right|\left\langle\epsilon, y_{n}\right\rangle k$
proof
Suppose $S_{n}=a_{1}+a_{2}+\cdots+a_{n}$
$\sum_{n=1}^{\infty}$ an canvergent, then $\left\langle S_{n}\right\rangle$ Convergent
$\Rightarrow\left\langle S_{n}\right\rangle$ canshy sequence.
$\therefore \forall \in>0, \exists k \in N$, sit $\left|S_{m}-s_{n}\right|<E, \forall n, m>k$
let $m=n+1$
So $\left|S_{m}-S_{n}\right|<\epsilon \rightarrow\left|S_{n+1}-S_{n}\right|=\left|a_{n+1}\right|<\epsilon, \forall>k$ $\rightarrow\left|a_{n}\right|<\epsilon, \forall n>k, S o\left|a_{n}-0\right|<\epsilon, \forall n>k$.
then $\lim _{n \rightarrow \infty} a_{n}=0$

Example:
$\left\langle a_{n}\right\rangle=\left\langle\frac{1}{n}\right\rangle \rightarrow 0$
and $\lim _{n \rightarrow \infty} a_{n}=0$ bul $\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$ diveroe

Corollary:
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ diverge.
proof:
Suppose that $\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ Convergent.
then, $\lim _{n \rightarrow \infty} a_{n}=0$, by theorem, $\rightarrow \mathrm{C}$!

Example

$\sum_{n}^{\infty} a_{n}=\sum(\sqrt{m}-\sqrt{n-1})$
$\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ Diverge, but $\lim _{n \rightarrow \infty} a_{n}=0$

Exercises
(1) $\sum_{n^{3}}^{\infty} \frac{1}{\sqrt{n}}$
(2) $\sum_{n=1}^{a} \sqrt{\frac{n}{3 n+5}}$
(3) $\sum_{n=1}^{\infty} \frac{n^{3}+2}{2 n(n+5)}$

Theorem
If $\sum_{n=1}^{\infty}$ and $\sum_{n=1}^{\infty}$ bn are Convergant Series and $k \in R$, then
(1) $\sum_{n=1}^{\infty}\left(\mathrm{an}+b_{n}\right)$ convergent and $\sum_{n=1}^{\infty}\left(\mathrm{an}+b_{n}\right)=\sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}+\sum_{n=1}^{\infty} \mathrm{b}_{\mathrm{n}}$
(2) $\sum_{n=1}^{m_{n}} k a_{n}$ convergent and $\sum_{n=1}^{\infty} k a_{n}=k \sum_{n s}^{\infty} a_{n}$
proof: (1)
let $\left\langle s_{n}\right\rangle$ be a sequence of partial sums of
$\sum_{n=1}^{\infty} a_{n}$ and
$\left\langle t_{n}\right\rangle$ bea seq of partipl sam of $\sum_{n=1}^{\infty} b_{n}$
$\sum_{n=1}^{\infty}$ an convergent, so $\exists s \in R$ s.t $\sum_{n=1}=\mathrm{s}$
and $\langle S n\rangle \rightarrow \mathrm{S} \Rightarrow \operatorname{Lim}_{n \rightarrow \infty} S_{n}=\mathrm{S}$.
also, $\sum_{n=1}^{\infty} b_{n}$ Canergent, then $\exists t=R$, s.t $\sum_{n=1}^{\infty} b_{n}=t$ and $\left\langle t_{n}\right\rangle \rightarrow t \rightarrow \operatorname{Lim}_{n \rightarrow \infty} t_{n}=t$ $\operatorname{Lim}_{n \rightarrow \infty}\left(s_{n}+t_{n}\right) \rightarrow \mathrm{S}+t$, but $\left\langle s_{n}+t_{n}\right\rangle$ is the seq of partial sum of $\sum_{n=1}^{\infty}\left(\mathrm{an}+b_{n}\right) \rightarrow$ $\sum_{n=1}^{\infty} a_{n+} b_{n}=\sum_{n+1}^{\infty} a_{n+} \sum_{n=1} b_{n}=s+t$
(2) let $\left\langle s_{n}\right\rangle$ be a seq of partial sums of $\sum_{n=1}^{\infty} a_{n}$ but $\sum_{n=1}^{\infty} a_{n}$ Convergent $\Rightarrow \exists s \in \mathbb{R} \mathrm{~s}, \mathrm{t}$ $\sum_{n=1}^{\infty} a_{n}=s$ and $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle=\mathrm{S}, \lim _{n \rightarrow \infty} S_{n}=S$.
$, \lim _{n \rightarrow \infty} k s_{n}=k, \lim _{n \rightarrow \infty} s_{n}=k S \rightarrow\left\langle k S_{n}\right\rangle \rightarrow k_{s}$
then $\sum_{n s_{1}}^{2} k a_{n}=k S=k \sum_{n \leq 1}^{\infty}$
then $\sum_{n=1}^{\infty} \mathrm{ka}_{\mathrm{n}}=k \sum_{n=1}^{\infty} \mathrm{a}_{\mathrm{n}}$

Exercises
(1) Given an example for two divergent Sories but their Sum is Convergent Series.

Sol:
let $\sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \frac{1}{n}$
and $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}-\frac{1}{n}$
the $\sum_{n s 1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n}\right)=\sum_{n=1}^{\infty} 0=0$ con and $\left\langle a_{n}+b_{n}\right\rangle \rightarrow 0$
اختبار المتسلسلات Series test
(1) Comparison test:

Theorem: If $0 \leq a_{n} \leq b_{n} \forall n \in N$, then
(1) $\sum_{n=1}^{\infty}$ bn convergent, then $\sum_{n=1}^{\infty}$ an Canvergont
(2) $\sum_{n=1}^{\infty} a_{n}$ divergent, then $\sum_{n \leq 1}^{\infty}$ bn divergent
`of partial sums of $\sum_{n_{1} 1}^{\infty} b_{n}$ sina $0 \leqslant$ an $\leqslant b_{n}$, then
$S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$
$\leqslant b_{1}+b_{2}+b_{3}+\cdots+b_{n}$
$=\mathrm{t}_{\mathrm{n}}$
but $\sum_{n=1}^{\infty} b_{n}$ Convergent, thei $\left\langle t_{n}\right\rangle \Rightarrow \mathrm{t}$ as $n \rightarrow \infty b_{n} \geqslant 0 \Rightarrow\left\langle t_{n}\right\rangle$ increasing seq and $t_{n} \leq t, \forall_{n}$ and $S_{n} \leqslant t_{n}, \forall n$, the $S_{n} \leqslant t, \mathrm{~S}_{0}\left\langle s_{n}\right\rangle$ is bounded
$\rightarrow\left\langle S_{n}\right\rangle$ is bounded and increasing (mono ton) $\Rightarrow\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle$ Convergent sequence
$\Rightarrow \sum_{n s}^{\infty}$ an Cowlergint.
(2) Suppose $\sum_{n=1}^{\infty}$ bn Converyont
by (1), $\sum_{n=1}^{\infty}$ an Convergent and $\rightarrow C$!, so $\sum_{n, 1}^{\infty} b_{n}$ divergent

P-series

$\sum_{n=1}^{\infty} \frac{1}{n^{p}}, \quad p>0$.
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{\mathrm{p}}}+\cdots$
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}= \begin{cases}\text { Canerge } & \text { if } p>1 \\ \text { diveng } & \text { if }<p \leqslant 1\end{cases}$

Examples

(0) $\sum_{n=1}^{\infty} \frac{1}{5 n^{3}}=\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n^{3}}, p=3>1$
then P - Series $\rightarrow p=3\rangle 1$, sa Caniergent
(2) $\sum_{n} \frac{1}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{n \frac{1}{t}}, p^{-1} \frac{1}{2}<1$

Then p series, $P=\frac{1}{2}<1, d$ inevgent
Theuron.
let Lan and $\sum b_{n}$ be posifive term Series s.t $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \neq 0$
then
Example:
D) $\sum^{\infty} n^{3}-1$
$n=04 n^{5}-3 n^{2}+3$
$a_{n}=\frac{n^{3}-1}{4 a^{5}-3 n^{2}+3} \geqslant 0$, choose bns $\frac{1}{n^{2}}$ to Compave
\sum thans $\sum \frac{1}{n^{2}}$ Convergant (p-sories $p=2>1$)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 \operatorname{in} \frac{n^{3}-1}{4 n 5-3 n^{2}+3} \div \frac{1}{n^{2}} \\
& =\lim _{n \rightarrow \infty}=\frac{n^{5}-n^{2}}{4 n^{5}-3 n^{2}+3}=\lim _{n \rightarrow \infty} \frac{\frac{n^{5}}{n 5}-\frac{n^{2}}{n^{5}}}{4 \frac{n^{5}}{n^{5}}-3 \frac{n^{2}}{n^{5}}+\frac{3}{n^{5}}} \\
& =L_{n \rightarrow \infty} \frac{1-\frac{1}{n^{3}}}{4-\frac{3}{n^{3}}+\frac{3}{n^{5}}}=\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{4}=\frac{1}{4}=0
\end{aligned}
$$

by theoramabove $\sum_{n=0}^{\infty}$ an Convargant.
$\left(2 \sum_{n=0}^{\infty} \frac{2 n+1}{n^{2}+2 n+1}\right.$
(3) Ratiotest) a.mil sl: in. 1 - If $b<1 \Rightarrow \sum$ an Cowergent.

2 if $h>1 \Rightarrow 2$ an divergent.
3 -if $b=1 \Longrightarrow$ no infurmations.
Examples
(1) $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
(2) $\sum_{n<0}^{\infty} \frac{n}{3^{n}}, \cdots$ Convergant.
(3) $\sum_{n \leq 0}^{2} n^{2}$
let $a_{n}=n^{2}, a_{n}+(n+1)^{2}$
$L_{n \rightarrow \infty} \frac{a_{n}+1}{a_{n}}=1 \operatorname{mim}_{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}=\frac{1, m \frac{n^{2}+2 n+1}{n^{2}}}{}$
$\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}+\frac{2 n}{n^{2}}+\frac{1}{n^{2}}}{\frac{n^{2}}{n 2}}=\operatorname{Lim}_{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{1}{n} 2}{=} 1$
$\therefore b=1, b w+\sum_{n=1}^{\infty} n^{2}$ is divergent
(4) $\sum_{n i 0}^{\infty} \frac{1}{n^{2}}$
lel ans $\frac{1}{n^{2}},-$ avit $=\frac{1}{(n+1)^{2}}$
$=\operatorname{Lim}_{n^{2}+2 n+1}=\lim _{n \rightarrow \infty}\left(\frac{1}{1+0}\right)=\operatorname{Lim}_{n \rightarrow \infty} I=1$
So $b=1$
but $\sum \frac{1}{n^{2}}$ is Canventi, 5 ina $p=2>1$
Theorem
tet \sum_{n+1}^{m} be a series, $a x>0, \forall n$, if $\exists b \in R$ sit
$n \sqrt{a_{n}}=b$
1 - if $b<1 \Rightarrow \backslash$ suman Comergent
2 - if $b>1 \rightarrow$ enp di
3 if be1 \Rightarrow no is Por matios.
Examples: Is the Pollowing Sarics Gurmergent?
(1) $\sum \frac{5 n}{2(3)^{n}}$
let $a_{i n}=\frac{5 n}{2(3)}>0$
$\lim _{n} \sqrt{\frac{5 n}{2(3)^{n}}}=L \cdot m-\sqrt{\frac{5}{2}} \cdot \frac{\sqrt[n]{n}}{\sqrt[3]{3^{n}}}=\operatorname{Lim}_{n} \sqrt{\frac{5}{2}} \cdot \frac{\sqrt{n}}{3}=1 \cdot \frac{1}{3}=\frac{1}{3}$

$$
\begin{aligned}
& =1 \cdot \frac{1}{3}=\frac{1}{3} \\
& b=\frac{1}{3} / 1 \Rightarrow \sum_{n=0}^{\infty} a_{n} \text { Convevgent. } \\
& \text { Excersices: } \sum_{n s 0}^{n} 2^{2}
\end{aligned}
$$

Defintion The number e

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots
$$

Remark

The Series $\sum_{n=0}^{\infty} \frac{1}{n!}$ is Convergent Serice.
prosp $s_{n}=1+\frac{1}{1!}+\frac{1}{2 t}+\frac{1}{s T}+\cdots+\frac{l}{n!}$
$=1+1+\frac{1}{2 \times 1}+\frac{1}{3 \times 2 \times 1}+\frac{1}{4 \times 3 \times 2 x_{1}}+\frac{1}{n!}$
$=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\cdots+\frac{1}{n!}$
$<1+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{(n-1)}}$
$=1+1+\frac{1}{2}+\frac{1}{t^{2}}+\frac{1}{2^{3}}+\frac{11+-1}{x^{n-1}}$

$$
\frac{1 / 2}{1 / 2}=1 \Rightarrow \operatorname{sn}\langle t+1+1=3
$$

$\therefore S_{n}\left\langle 3 \Rightarrow\left\langle S_{n}\right\rangle\right.$ boumided and incveasing $\Rightarrow\langle\mathrm{sn}\rangle$ Canvevge
Excersices
prave that $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)$

Example

prove theat e is irpational Aumber 05
Suppase e is ralional number $\Rightarrow 3 m, n>0$ sit
$e=\frac{m}{n}$.
$\because e=\sum_{n=0}^{\infty} \frac{1}{n!} \Rightarrow S_{n}=1+1+\frac{1}{2!}+\frac{1}{3!}+\infty+\frac{1}{n!}$
$e-5 n=\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\frac{1}{(n+3)!}$
$=\frac{1}{(n+1)!}+\frac{1}{(n+2)(n+1)!}+\frac{1}{(n+3)(n+2)(n+1)!}+$
$=\frac{1 x}{(n+1)!}\left[i+\frac{1}{(n+2)}+\frac{1}{(n+3)(n+2)}+\infty\right]$
$<\frac{1}{(n+1)!}\left[1+\frac{1}{(n+1)}+\frac{1}{(n+1)^{2}}+\right]$
$=\frac{1}{(n+1)!}, \frac{n+1}{n}=\frac{1}{n+1) n!} \cdot \frac{n+1}{n}=\frac{1}{n \cdot n!}$
$(n!) e \in N$ since $n l_{1}=n!\frac{m}{n}=n(n-1)!\frac{m}{n}$

$$
=(n-1)!m \in N
$$

eand n!s $n=n!\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}\right)$

$$
=n!+n!+\frac{n 1}{2!}+\frac{n!}{3!}+\cdots-1
$$

Since $n \geqslant 1 \Rightarrow 3$ natwal number $(e-5 n) n$!
sil $0<e-5_{n}<\frac{1}{n}<1$ by (1) $-C$!
e is inpational amariber

- Alternating Series aj $234 a$ al

$$
\begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-44+ \\
& \text { or }_{n=1}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots
\end{aligned}
$$

Theoren (Alternating Series test)
The series $\sum_{n=1}^{\infty}(-2)^{n-1} a_{n}+$ is Convergent if
(1) $a_{n}>0, v_{n}$
(e) $a_{n+1} \leqslant 0, v n$
(3) Lim an $=0$

Example Is the fallewing shries are Comergent.
(1) $\sum_{n \leqslant 1}^{\infty} \frac{(-1)^{n}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
$a_{n}=\frac{1}{n}>0, a n+1=\frac{1}{n+1}<\frac{1}{x}=a_{n}, \lim _{n \rightarrow \infty} \frac{1}{n}=0=\sum_{n}^{n} \frac{(-1)^{n}}{n}$ Gonvergent. 8
$\left(2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}\right.$?
Absolule and Comditional Convergencen)
Pejintion (Absetutely Covergant)
A series \sum an is Called absolutely convergena is the associated series \sum lanl Garvergent.
Defintion (Conditionally Convergent).
A series $\sum a_{n}$ is guled Condilionally Convergenl if the sseciated series \sum_{a} Covengentbut \sum lanl divengent
(1) lel $\sum a_{n}=\sum_{n=0}^{\infty} \frac{(-1)^{4}}{2^{n}}$
\Rightarrow Llan $\left.\left|=\sum_{n=0}^{\infty}\right| \frac{(-y)^{n}}{2^{n}} \right\rvert\,=\sum_{n=0}^{\infty} \frac{1}{2^{n^{\prime}}}$, Geometric saries
(2) let $\sum a x=\sum_{n=0}^{\infty} \frac{(-1)^{2}}{n+1}$
i $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$ not alosolutely Cowengent).
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$
$a_{n}=\frac{l}{n+1}, a_{n_{7} 1}=\frac{1}{n+2}<\frac{1}{n+1}=\mathrm{cm}$
$\therefore \sum \frac{\sum(-1)^{n}}{n+1}$ Conditiontity convergent
Thearem
$\Rightarrow\langle 5 n\rangle$ is Cauthy seq.
If $\left(t_{n}\right)$ is aseq if partial sions of \backslash suman
$\Rightarrow t_{n}=a_{1}+a_{2}+\cdots+a_{n}$ and
$\Rightarrow\langle$ tn $>$ canchy ser.

$$
\Rightarrow\left\langle t_{n}\right\rangle \text { convergent } \Rightarrow 2 \text { an Convengant }
$$

If Eang 5 bn Cowvergant series.
Is $\sum a_{n} \cdot \sum b_{n}-\left(a_{n}+a_{n}+c\right) \cdot\left(l_{1}+b_{i}+\right.$
$=a_{1}\left(b_{1}+b_{t}+y\right)+a_{2}\left(b_{1}+b_{2 x}\right)+\cdots$
Camergent?
Definitin(Cavshy produch of Series)
let $\sum_{n=1}^{\infty}, \sum_{n}^{\infty} b_{n}$ be twa Suries and $C_{n=} \sum_{k s}^{n} a_{k} b_{n-k}=a_{10} b n+a_{1} b_{n-1}+\cdots+a_{n} b_{0}$
Exanple
$\sum_{n=0}^{\infty} a_{n}+\sum_{n>0}^{\infty} b_{n}$ not Convergent

$$
=1-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)
$$

(power Series
A series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a x+a_{2} x^{2}+93 x^{3}+\cdots
$$

where $x \in R$ is Called power scriesin x
Exc shew that \backslash sumx + rak $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is Convergant
وفي الختام نسأل الله التوفيق
-بوم تبعثن عبادلك

