Mathematical Analysis1

third level First course

Mathematics department College of Education for Pure Sciences

Dr. Nadia Nadhim

2021 - 2020

Axioms of real numbers

1. The axioms arithmetics

2. The axioms of ordered 3. The complete Axioms * Let R be a real number and $a, b, c \in R$. Then $A_1: \forall a, b, c \in R \ a + (b + c) = (a + b) + c.$ $A_2: a + b = b + a$ A_3 : for any $a \in R, \exists!$ element $0 \in R$ s.t a + (-a) = -a + a = 0 A_{4} : Ther exists an element $0 \in R$, S.t a + 0 = 0 + a = aThen (R, +) is a commutative group. $A_5: a. (b.c) = (a.b).c$ $A_{6}: a.b = b.a$ A_7 : \exists ! Element in $R(1 \in R)$ s. t a. 1 = 1. a = a $A_8: \forall a \in R, \exists ! a^{-1} \in R, s.t a. a^{-1} = a^{-1}.a = 1$ Form $A_5 \rightarrow A_8$. (R, .) commutive ring $A_9: a.(b+c) = (a.b) + (a.c)$ $A_1 \rightarrow A_9$ (R, +, .) Is a field

Def:

* Subtraction a - b = a + (-b), $\forall a, b \in R$ * Division $a \div b = a \cdot b^{-1} \ni b \neq 0$ The Axioms of order: $A_{10}: a \leq b \text{ or } b \leq a$ $A_{11}: a \leq b \text{ and } b \leq c \rightarrow a = b$ $A_{12}: a \leq b \text{ and } b \leq c \rightarrow a \leq c$ $A_{13}: a \leq b, c \in R \rightarrow a + c \leq b + c$ $A_{14}: a \leq b, c \text{ is not negative } \rightarrow a. c < -b. c$ $A_1 \rightarrow A_{14}, (R, +, ., \leq) \text{ order field.}$ Remark: $R^+ = \{x \in R; x > 0\}$ $R^- = \{x \in R; x < 0\}$

Propositions: Let (R, +, .) be a field, then prove the following 1. $\forall a, b, c \in R$, *if* a + b = b + c, *then* a = c2. $\forall a, b, c \in R$, *if* a.b = c.b, *then* a = c 3. $\forall a, b \in R$, prove that:

1.
$$-(-a) = a$$

2. $(a^{-1})^{-1} = a$
3. $(-a) + (-b) = -(a + b)$
4. $(-a).b = -a, b$
5. *if* $a.b = 0$ then either $a = 0$ or $b = 0$

Proof (5):

Let
$$a \neq 0$$
, T.P $b = 0$
Since $a \neq 0$, then $\exists a^{-1} \in R \ s.t \ a.a^{-1} = 1$
 $a^{-1}(a.b) = 0$
 $(a^{-1}.a).b = 0$
 $1.b = 0 \rightarrow b = 0$
Let $b \neq 0$, T.P $a = 0$

Since $b \neq 0$, then $\exists b^{-1} \in R \ s.t \ b.b^{-1} = 1$ $(a.b)b^{-1} = 0$ $a.(b.b^{-1}) = 0$ $a.1 = 0 \rightarrow a = 0$

Absolute Value:

let $a \in R$, the absolute value of a is:

$$|a| = \begin{cases} a & \text{if } a > 0\\ 0 & \text{if } a = 0\\ -a & \text{if } a < 0 \end{cases}$$
$$|a|: R \to R^+ \cup \{0\} \text{ is the function of absolute value.}$$

Properties of absolute value.

Theorem: let a be a real number, then

1. $|x| < a \iff -a < x < a$

2. $|X| > a \iff x > a \text{ or } x < -a$

Corollary: let $a \in R^+$ and $b \in R$, then 1. $|x - b \le a \text{ if } f \ b - a \le x \le b + a$ 2. $|x - b| \ge a \text{ if } f \ x \ge b + a \text{ or } x \le b - a$ Let $a, b \in R$ and k be areal number, then

1. $|a| \ge 0$ 2. |a| = 0 iff a = 03. $a^2 = |a|^2$ 4. $|ab| = |a| \cdot |b|$ 5. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ 6. $|ka| = |k| \cdot |a|$

Example:
$$\forall a \in R$$
, $\sqrt{a^2} = |a|$
Proof:
If $a > 0$ then $\sqrt{a^2} = a$
If $a < 0$ then $\sqrt{a^2} = -a$
by def absolute value to a we have
 $|a| = \begin{cases} a = \sqrt{a^2} & \text{if } a \ge 0 \\ -a = \sqrt{a^2} & \text{if } a < 0 \end{cases}$

$$|a| = \sqrt{a^2}$$
 وفي كلتا الحالتين يكون لدينا

The triangle inequality

Theorem: if $a, b \in R$, then $|a + b| \le |a| + |b|$ Proof:

$$|a + b|^{2} = (a + b)^{2} \le a^{2} + 2ab + b^{2}$$

$$\le |a|^{2} + 2|ab| + |b|^{2}$$

$$\le (|a| + |b|)^{2}$$

$$\therefore |a + b| \le |a| + |b|$$

Corollary: if $a, b \in R$, then $|a - b| \ge |a| - |b|$

LCH (2)

Def: let $S \subset R$ S is said to be bounded above if there is some real numbers m s.t $x \leq m$ $\forall x \in S$, m is called upper bounded of S

LCH (3)

Proposition: If $\emptyset \neq S \subset R$ and $\sup(S) = M$, then $\forall p < M \exists x \in S \text{ s.t } p < x \leq M$ i.e.: if $\sup(S) = M$ then $\forall \epsilon > 0$, $\exists x \in S \text{ s.t } M - \epsilon < x \leq M$ proof: let $\sup(S) = M$ then $\forall x \in S$, $x \leq M$ T.P $\forall x \in S, p < x$? Suppose that $x \leq p$, $\forall x \in S$ $\rightarrow p$ is upper bounded for S, but by hypothesis $p < M = \sup(S)$ C! $\therefore \exists x \in S \ni p < x \leq M$.

Theorem: The set N of natural numbers is unbounded above in R Proof:

Suppose N is bounded above. By completeness axiom N has a supreme M Let sup(N) = MFrom proposition above $\exists n \in N$ s.t M - 1 < n < M. Then $M - 1 < n \rightarrow M < n + 1$, But $n + 1 \in N$ And $n + 1 > M = sup(N) \rightarrow C$! Therefore, N is unbounded above

Theorem: Archimedan property

If $x \in R^{++}$ then for any $y \in R$, there exists $n \in N$ s.t n > y

Def: let F a field, F is called Archimedean filed, if for any $x \in F$, $\exists n \in N$ s.t n > x i.e.: N is abounded above in F

Ex:

1. R is Archimedean field

2. Q is Archimedean field

3. $s = \{a + b\sqrt{2} : a, b \in Q\}$ is Archimedean field

Theorem: Denseness property

Between any two distinct reals, there exists infinitely many rationales and irrationals

LCH (4)

Def: (irrational numbers Q') Let Q' be a complement of Q in the real number R. i.e.: Q' = R - Q, we called is set of irrational numbers remark: $R = Q \cup Q'$ Theorem: prove that $\sqrt{2}$ is irrational number i.e.: There are no rational numbers whose square is 2 i.e.: $\nexists x \in Q \ni x^2 = 2$ proof: suppose $\sqrt{2}$ is rational number i.e. $\sqrt{2} = \frac{m}{n}$ So $2 = \frac{m^2}{n^2}$, then $m^2 = 2n^2$ Case 1: m and n are odd. Since m is odd $\rightarrow m^2$ is odd Since n is odd $\rightarrow n^2$ is odd But $2n^2$ is even $\rightarrow m^2 = 2n^2 \rightarrow C!$ Case 2: m is even and n is odd, then m = 2pand $m^2 = 4p^2$, $\rightarrow 4p^2 = 2n^2 \rightarrow 2p^2 = n^2 \rightarrow C!$ Case 3: m is odd and n is even, then, since m is odd $\rightarrow m^2$ is odd, and $2n^2$ is even $\rightarrow m^2 = 2n^2 \rightarrow C!$ $\therefore \sqrt{2}$ is irrational number

Theorem: Q is not Complete field

Theorem: for every real x > 0 and every integer n > 0 there is one and only one positive real y such that $y^n = x$

Theorem: if $\frac{m}{n}$ and $\frac{p}{q}$ are rationales and $q \neq 0$ then $\frac{m}{n} + \sqrt{2}\frac{p}{q}$ is irrational number Proof:

Suppose $\frac{m}{n} + \sqrt{2} \frac{p}{q}$ is rational Then there is $r, s \in Z$, $s \neq 0$ s. $t \frac{m}{n} + \sqrt{2} \frac{p}{q} = \frac{r}{s}$ So $\sqrt{2} \frac{p}{q} = \frac{r}{s} - \frac{m}{n} \rightarrow \sqrt{2} = \frac{p}{q} \left(\frac{rn - sm}{sn} \right) \in Q$ So $2 = \left(\frac{q(nr - sm)}{psn} \right)^2 \rightarrow !$ with theorem: $\nexists x \in Q \ni x^2 = 2$

Theorem: Between any two distinct rationales there is an irrational number.

LCH (5)

Ex:

- 1. Prove $x^2 \ge 0$, $\forall x \in R$
- 2. Let a, b be tow real s.t $a \le b + \epsilon \forall \epsilon > 0$ then $a \le b$ Proof (2): Suppose a > bThen a + a > b + a $\frac{2a}{2} > \frac{b+a}{2}$ $a > \frac{b+a}{2}$ (1) Take $\epsilon = \frac{a-b}{2} > 0$ (Since a > b, then $a - b > 0 \rightarrow \frac{a-b}{2} > 0$) $a \le b + \epsilon \rightarrow a \le b + \frac{a-b}{2} = \frac{2b+a-b}{2} = \frac{a+b}{2} < a$ From (1) C! $a \le b$

Ex:

- 1. *Q* is order field $(A_1 \rightarrow A_{14})$
- 2. C is field but not order

since: if
$$x = 1 \rightarrow x = \sqrt{1} \rightarrow x^2 = -1 < 0 \rightarrow C!$$

since: $(x^2 \ge 0, \forall x \in R)$

Metric space

Def: let X be an nempty set and $d: X \times X \to R^+$ be a mapping. We say that order (X, d) is metric space if it is satisfying the following:

1. $d(x,d) \ge 0$, $\forall x, y \in X$ 2. d(x,y) = d(y,x)3. $d(x,z) \le d(x,y) + d(y,z)$ 4. $d(x,y) = 0 \iff x = y$

Not: *d* is called metric mapping d(x, y) is a distance between x and y

Remark: A mapping $d: X \times X \to R^+$ is called a pseudo metric for X iff d satisfies (1,2,3) in the above definition and d(x, x) = 0, $\forall x \in X$

Cauchy - Shwarz inequality

Let $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ be two tripe of complex number, then:

$$\sum_{i=1}^{n} |a_i + b_i| \le \left(\sum_{i=1}^{n} |a_i|^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{n} |b_i|^2\right)^{\frac{1}{2}}$$

Minkowskis inequality

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{\frac{1}{p}} , p \ge 1$$

Ex: if X = R and d(x, y) = |x - y|, show that (X,d) is a metric space. Solution:

1.
$$d(x, y) = |x - y| \ge 0$$
 by def. of Absolute value
2. $d(x, y) = |x - y| = |-(y - x)| = |y - x| = d(y, x)$
3. $d(x, z) = |x - z| = |x - y + y - z|$
 $\le |x - y| + |y - z|$
 $= d(x, y) + d(y, z)$
4. $d(x, y) = 0$ iff $x = y$
 $d(x, y) = 0$ iff $|x - y| = 0$
iff $x - y = 0$
iff $x = y$

 \therefore (*X*, *d*) is a metric space

Discrete metric space Let $X \neq \emptyset$ and $d: X \times X \rightarrow R$ s.t

$$d(x, y) = \begin{cases} 0 & if \ x = y \\ 1 & if \ x \neq y \end{cases}$$

 $\forall x, y$, show that (X, d) is metric space Solution:

1.
$$d(x, y) \ge 0, \forall x, y \in X$$
 (by def. d)
2. $d(x, y) = d(y, x)$?
if $x = y \to d(x, y) = 0 = d(x, y)$
if $x \ne y \to d(x, y) = 1 = d(y, x)$
3. Let $x, y, z \in X$ T.P $d(x, y) \le d(x, y) + d(y, z)$?
if $x = z$ then $d(x, z) = 0$
since $d(x, y) \ge 0$ and $d(y, z) \ge 0$ then
 $d(x, z) \le d(x, y) + d(y, z)$
if $x \ne z$ then $d(x, z) = 0$
since $d(x, z) = 1$ and either $x \ne y$ or $x \ne z, y = z$
either: $d(x, z) = d(x, y) = d(y, z) = 1$
or: $d(x, z) = d(x, y) = 1$ and $d(y, z) = 0$
then: $d(x, z) \le d(x, y) + d(y, z)$
 $1 \le 1 + 1$
 $1 \le 1 + 0$

LCH (6)

Ex: show that (X, d) is pseudo metric space but not metric where $d: X \times X \to R$, $d(x, y) = |x^2 - y^2|$, for all $x, y \in R$. Solution:

Let
$$x, y, z, \in R$$

1- $d(x, y) = |x^2 - y^2| \ge 0$, by def Abs. Value
2- $d(x, y) = |x^2 - y^2| = |-(y^2 - x^2)| = |y^2 - x^2| = d(y, x)$
3- $d(x, y) = |x^2 - y^2| = |x^2 - z^2 + z^2 - y^2| \le |x^2 - z^2| + |z^2 - y^2| \le d(x, z) + d(z, y)$

4-
$$d(x, x) = |x^2 - x^2| = 0$$
, $\forall x \in R$
 $\therefore (X, d)$ pseudo metric space but not metric space,
since, if $d(x, y) = 0 \rightarrow |x^2 - y^2| = 0 \rightarrow x^2 - y^2 = 0 \rightarrow x^2 = y^2$
 $\rightarrow x = y$
ex: let $x = 1$, $y = -1$
then $d(x, y) = d(1, -1) = |1^2 - (-1)^2| = 0$, but $1 \neq -1$
Def: let (X, d) be a metric space $S, T \subseteq X, p \in S$ then
1- The distance between p and S is
 $d(p, S) = \inf\{d(p, x) : x \in S\}$
2- The distance between S and T is
 $d(S, T) = \inf\{d(x, y) : x \in S, y \in T\}$

- 3- Diameter of S is $d(S) = \sup\{d(x, y) : x, y \in S\}$
- 4- S is called bounded, if $\exists M \in R^{++}$, s.t $d(x, y) \leq M$, $\forall x, y \in S$.

Def: let (X, d) be a metric space and $S \subseteq X$, S is called open set, if $\forall x \in S$, $\exists r > 0$ s.t $B(x, r) \subset S$

Ex: if
$$S = \emptyset$$
, then S is open set
If $x \in S \to \exists r > 0 \ s.t \ B(x,r) \subset S$
 $F \to F \ or \ T \ : \ T$

LCH (7)

If S = X, then S is open set

Solution: Since all balls is contains in X

Any open interval is open set. But the convers is not true

Solution: Let $x \in s \rightarrow x \in (a, b) \subseteq (a, b) = S$. So. S is open set

Ex: Let
$$S = (-1,1) \cup (2,3)$$

Let $x \in s$, then $x \in (-1,1)$ or $x \in (2,3)$
Then $x \in (-1,1) \subset S$ or $x \in (2,3) \subset S$

: S is open set. But is not open interval

Any ball is open set.

Proof:

$$\forall y \in B(x,r), \exists w > 0, s.t B(y,w) \subset B(x,r)$$
?
Let $w = r - d(x,y) > 0$
Let $Z \in B(y,w) \rightarrow d(z,y) < w$
 $d(Z,y) \leq d(x,y) + d(y,z)$
 $\leq d(x,y+w)$
 $= d(x,y) + r - d(x,y)$
 $= r$
Then $Z \in B(x,r) \rightarrow B(y,w) \subset B(x,r)$
This is true for all y in B(x,r)
So B(x,r) is open set

 $S = \{x\}, x \in R$ is not open set

Since there is not open interval in S Containing x and Contained in S i.e (($\forall r > 0, \exists B(x,r) = (x - r, x + r) \subset S$))

$[a, b], [a, b), [a, \infty)$ and $(-\infty, b]$ are not open set

Proof: If S=[a,b], then S is not open set ? Since, if $x = a \rightarrow \forall r > 0$, $B(a,r) = (a - r, a + r) \notin [a, b]$

The intersection of any tow open set is open set

i.e ((the intersection of any finite family of open set is open))

Proof: Let $A = \{S_k : S_k \text{ is open set } k = 1, 2, ..., n\}$ $T.p \cap_{k=1}^n S_k \text{ is open set}$ Let $x \in \bigcap_{k=1}^n S_k \to x \in S_k, \forall k$, but S_k is open set $\forall k$, then $\exists r_k > 0$ s.t $B(x, r_k) \subset S_k$ Let $r = \min\{r_1, r_2, ..., r_n\}$ Then $B(x, r) \subset S_k, \forall k$. $\therefore B(x, r) \subset \bigcap_{k=1}^n S_k$, therefore $\bigcap_{k=1}^\infty S_k$ is open set.

Theorem: the infinite intersection of open sets is not necessary open set.

Ex: let
$$S_n = \left(x - \frac{1}{n}, x + \frac{1}{n}\right) \forall x \in R$$
, open interval.
 $n = 1 \rightarrow s_1 = (x - 1, x + 1)$
 $n = 2 \rightarrow S_2 = (x - \frac{1}{2}, x + \frac{1}{2})$
 $n = 3 \rightarrow S_3 = (x - \frac{1}{3}, x + \frac{1}{3})$

When $n \to \infty \bigcap_{k=1}^{\infty} S_k = \{x\}$ is not open Theorem: the union of any family (finite or infinite) – (countable or uncountable) of open set is open

Proof:

Let $A = \{S_{\alpha}, S_{\alpha} \text{ is open set } \alpha \in \Lambda\}$ T.P: $\bigcup_{\alpha \in \Lambda} S_{\alpha}$ is open set Let $x \in \bigcup_{\alpha \in \Lambda} S_{\alpha} \to \exists \alpha \in \Lambda \text{ s. } t \ x \in S_{\alpha}$ Since S_{α} is open set $\to \exists \alpha > 0 \text{ s. } t$ $B(x, r_{\alpha}) \subset S_{\alpha}$, then $x \in B(x, r_{\alpha}) \subset S_{\alpha} \subset \bigcup_{\alpha \in \Lambda} S_{\alpha}$ This is true $\forall x \in \bigcup_{\alpha \in \Lambda} S_{\alpha}$, therefore $\bigcup_{\alpha \in \Lambda} S_{\alpha}$ is open set

Theorem: S is open iff S is the Union of balls

LCH (8)

Def: let X be an n-empty set and τ is a family of subsets of X, if τ satisfy the following

- 1- ϕ , $X \in \tau$
- 2- If G , $H \in \tau \rightarrow G \ \cap H \in \tau$
- 3- If $\{G_{\lambda}\} \in \tau \to \bigcup_{\lambda \in \Lambda} G_{\lambda} \in \tau$

Then, the order pair (X, τ) is called topological Space.

Theorem: every metric space is topological space. Proof:

> Let (X, d) be a metric space and τ = the family of all open subsets of X, then 1- ϕ , X open sets $\rightarrow \phi$, X $\in \tau$ 2- G_1 , $G_2 \in \tau \rightarrow G_1$, G_2 are open sets $\rightarrow G_1 \cap G_2 \in \tau$ 3- If $G_\lambda \in \tau$, $\lambda \in \Lambda \rightarrow \forall \lambda$, G_λ open subset of X

Def: let d_1 and d_2 be two metric mapping in the set X, then d_1 , d_2 are called Equivalent if every open set in (X, d_1) is open in (X, d_2) and Vice Versa

Def: let (X, d) be a metric space and $S \subseteq X$, S is called closed set if S^c is open Set where $S^c = X - s$ (Complement of S)

```
Ex:
   1- S = X is closed set.
       Solution:
       Since S^c = X^c = \phi open set
   2- S = \phi is closed set
       Solution:
       since S^c = \phi^c = X is open set
   3- S = [a, b], [a, b), S = (-\infty, b] are closed set in R
       Solution:
       if S = [a, b] \rightarrow S^c = (-\infty, a) \cup (b, \infty) open set \rightarrow S is closed set
   4- In R, S = \{x\} is closed set
       Since :
       S^c = (-\infty, x) \cup (x, \infty) \rightarrow S^c is open, So S is closed set.
   5- Any finite set in R is closed set
       Solution:
       let S = \{x_1, x_2, \dots, x_n\} \subseteq R.
       S^{c} = (-\infty, x_{1}) \cup (x_{1}, x_{2}) \cup ... \cup (x_{n-1}, x_{n}) \cup (x_{n}, \infty)
       So, S^c is open, then S is closed set
   6- If S = N, S = Z, then S is Closed set
       Solution:
       let S = N
       then S^c = (-\infty, 1) \cup (1, 2) \cup (2, 3) \dots (\bigcup_{n=4}^{\infty} (n, n+1))
       \rightarrow S^c is open \rightarrow S is closed
       if S = Z \to S^c = (\bigcup_{n=1}^{\infty} (-(n+1), -n)) \cup (-1, 0) \cup (0, 1) \cup (\bigcup_{n=1}^{\infty} (n, n+1))
       S^c is open, then S is closed
```

LCH (9)

7- The Union of finite number of closed sets is closed. Solution:

let $A = \{S_i, ; S_i \text{ closed set in } X, i = 1, 2, ..., n\}$ T.P: $\bigcup_{i=1}^n S_i$ is closed set i.e. T.P $(\bigcup_{i=1}^n S_i)^c$ is open set Since S_i is closed, $\forall i$ then S_i^c is open $\forall i$ and $\bigcap_{i=1}^n S_i^c$ is open So, $(\bigcup_{i=1}^n S_i)^c$ is open therefore $\bigcup_{i=1}^n S_i$ is closed.

Remark: the infinite union of closed sets is not necessary closed set

Ex: let $S_n = \left\{ \begin{bmatrix} \frac{-n}{n+1}, \frac{n}{n+1} \end{bmatrix} : n \in N \right\}$, S_n is closed interval, Is $\bigcup_{n=1}^{\infty} S_n$ is closed? Solution: If $n = 1 \rightarrow S_1 = \begin{bmatrix} \frac{-1}{2} \\ \frac{1}{2} \end{bmatrix}$ If $n = 2 \rightarrow S_2 = \begin{bmatrix} \frac{-2}{3} \\ \frac{2}{3} \end{bmatrix}$ \therefore When $n \rightarrow \infty \implies \lim_{n \rightarrow \infty} \frac{\pm n}{n+1} = \lim_{n \rightarrow \infty} \frac{\pm \frac{n}{n}}{\frac{n}{n} + \frac{1}{n}} = \pm 1$ $\therefore \bigcup_{n=1}^{\infty} S_n = (-1, 1)$ open set

Theorem: The infinite intersection of closed set S is closed?

Def: let X be a metric space and $S \subseteq X, p \in X$, p is called an accumulation point of S if every open set contain p, contains another point q s.t $p \neq q$, $q \in S$.

i.e.: p is a cc. point of S if $\forall U$, U is open set $p \in U$, then $U - P \cap S \neq \phi$

Remark: Since every open set is Union balls. So, we can define acc. Point as following: P is acc. Point of S, if $\forall r > 0 \ B(p,r) - \{p\} \cap S \neq \phi$

* S' is the closure of all acc. Point of S (Derived set)

- * \overline{S} is the closure of S and $\overline{S} = S \cup S'$
- * P is not acc. Point, if $\exists U$, U is open and $p \in U$ S.t $U - \{p\} \cap S = \phi$. (i.e. $\exists r > 0$, $B(r, p) - \{p\} \cap S = \phi$

Ex: let $s = \{1,5\}$, find S' and \overline{S}

Solution: TO find S' there are some cases

LCH (10)

x = 1, x = 5, x < 1, x > 5, 1 < x < 5If $x = 1 \to x$ is not acc. Point since, $\exists r > 0$ $B(x,r) - \{x\} \cap S = \emptyset$, when r = 1 $B(1,1) - \{1\} \cap \{1,5\} = (0,2) - \{1\} \cap [1,5\} = \emptyset$ If $x = 5 \to x$ is not acc. Point, since $\exists r > 0$, $B(x,r) - \{x\} \cap S = \emptyset$, when r = 1 $\to B(5,1) - \{5\} \cap \{1,5\} = (4,6) - \{5\} \cap \{1,5\} = \emptyset$ If $x < 1 \to x$ are not acc. Point since $x \in (x - 1,1)$ and $(x - 1,1) \cap S = \emptyset$ If $x > 5 \to x$ are not acc. Point, since $x \in (5, x + 1)$ and $(5, x + 1) \cap S = \emptyset$ If 1 < x < 5 are not acc. Point since, $x \in (1,5)$ and $(1,5) \cap S = \emptyset$ So, S has no a acc. Point then $S' = \emptyset$ and $\overline{S} = S \cup S' = S \cup \emptyset = S$.

Let
$$s = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\} = \left\{\frac{1}{n}, n = 1, 2, 3, \dots\right\}$$
 show that $S' = \{0\}$

If S = (a, b), find S'Solution: If $x = a \rightarrow x$ is acc. Point since $\forall r > 0$, $a \in B(0, r) = (a - r, a + r)$ and $B(a, r) - \{a\} \cap S \neq \emptyset$ If $x = b \rightarrow x$ is acc. Point, since $\forall r > 0$, $b \in B(b, r)$ B(b, r) = (b - r, b + r) and $B(b, r) - \{b\} \cap (a, b) \neq \emptyset$ If $a < x < b \rightarrow x$ are acc. Point since $\forall r > 0$, $x \in B(x, r) = (x - r, x + r)$ and $B(x, r) - \{x\} \cap S \neq \emptyset$ That is $(x - r, x + r) - \{x\} \cap (a, b) \neq \emptyset$ If $x < a \rightarrow x$ are not acc. Point since $x \in (x - 1, a)$ and $(x - 1, a) \cap S = \emptyset$ If $x > b \rightarrow x$ are not acc. Point, since $x \in (b, x + 1)$ and $(b, x + 1) \cap (a, b) = \emptyset$ $\therefore S' = [a, b] \rightarrow \overline{S} = S \cup S' = [a, b]$

LCH (11)

Def: A sub set A of a metric space X is said to be dense if $\overline{A} = X$ Ex: prove that $\overline{Q} = R$ (i.e., Q dense set in R) Solution:

> If $x \in R$, then x is acc. Point in Q. Since any open interval Contain x Contains infinitely rational and irrationals Then Q' = R

So $\overline{Q} = Q \cup Q' = Q \cup R = R$

Def: a metric space is called separable if it has a countable dense subset.

Ex: R separable since Q countable and $Q \subseteq R$, with Q dense in R

Theorem: let X be a metric space, $S \subseteq X$ then

1- S is closed iff $S' \subset X$

2- \overline{S} is closed set

3- $\overline{S} = S$ iff S closed set

4- \overline{S} is smallest closed set contains S.

Compact Space

Def: let (X, d) be a metric space, $\emptyset \neq S \subseteq X$, if the set $\{U_{\lambda}: U_{\lambda} \text{ open set}, \lambda \in \Lambda\}$ is a family of open subsets of X such that $S \subseteq \bigcup_{\lambda \in \Lambda} U_{\lambda}$, then the family $\{U_{\lambda}\}$ is called open cover for S in X.

- If the family $\{U_{\lambda}\}$ is finite and $S \subseteq \bigcup_{\lambda \in \Lambda} U_{\lambda}$ then $\{U_{\lambda}\}$ is called finite cover.
- Let $\{U_{\lambda}\}$ and $\{U_{\alpha}\}$ be to open cover for S and $U_{\lambda} \in \{U_{\alpha}\} \forall \lambda$, then $\{U_{\lambda}\}$ is called subcover for $\{U_{\alpha}\}$

Def: let A be a subset of a metric space (X, d), A is called compact set if every open cover for A in X has a finite subcover.

LCH (12)

Exp: Any finite subset B of matric space (X, d) is **compact set** Ex: R is not compact

Ex : Any closed interval A=[a,b] is Compact.

Proof :

Since we can restrict any open cover for A to finite subcover such as :

Let $\epsilon > 0, B = \{(a - \epsilon, a + \epsilon, (a, b), (b - \epsilon, b + \epsilon)\}$

(a) (b]

Theorem: ((Bolzano weir strass theorem)) In compact space X, every infinite subset S of X has at least one accumulation point.

Theorem : In compact metric space, every closed subset is compact.

Proof : X be a compact metric space, and A be a closed subset of X, then A^c is open. T.P A is compact.

Let $B = \{U_{\lambda} : U_{\lambda} \text{ is open set in } X, \forall \lambda \in \land \}$ be open cover for A.

Then $A \subseteq \bigcup_{\lambda \in A} U_{\lambda}$

Sine $X = A \cup A^c \subseteq (\bigcup_{\lambda \in {}^{\wedge}} U_{\lambda}) \cup A^c$,

But A^c is open set then $\bigcup_{\lambda \in {}^{\wedge}} U_{\lambda} \cup A^c$ is open cover for X, since X is compact set, then there exists a finite member $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$X = A^c \ \cup \left(\bigcup_{i=1}^n U_{\lambda i}\right)$$

Since that $X = A^c \cup (\bigcup_{i=1}^n U_{\lambda i})$. Since $A \cap A^c = \emptyset$, then $A \subseteq \bigcup_{i=1}^n U_{\lambda i}$ \Rightarrow B has a finite subcover { $U_{\lambda 1}, U_{\lambda 2}, \dots, U_{\lambda n}$ }. For A, \Rightarrow A is compact.

LCH (13)

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is closed

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is bounded

Remark: In metric space

Theorem: Let $\{I_n : n = 1, 2, 3, ...\}$ be a family of closed interval if $I_{n+1} \subset I_n$, $\forall n$, then $\bigcap_{n=1}^{\infty} I_n = \emptyset$

Theorem: (**Hien-Bord Theorem**) Every closed and bounded subset of R^n , $n \ge 1$, is compact.

Chapter Three

Sequences in Metric Space

Definition: Let S be any set a function f whose domain is the set N and the range is S is Called a sequence in S.

i.e. $f: N \to S$, where $\forall n \in N, \exists x_n \in S \text{ s. } t f(n) = x_n$

$$1. < \frac{1}{5n} > = \frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \dots$$

$$2. < \frac{1}{n+1} > = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

$$3. < 4 > = 4, 4, 4, \dots$$

$$4. < n-3 > = -2, -1, 0, 1, \dots$$

Def: Let (X, d) be a metric space and $\langle X_n \rangle$ be seq. in X, then $\langle X_n \rangle$ is said to be converges to appoint in X, if $\forall \epsilon > 0$, $\exists k \in N \ s.t \ d? (X_n, x) < \epsilon, \forall n > k$. We write $X_n \to x$ or $\lim_{n \to \infty} X_n = x$, x is called

LCH (14)

A Limit point of $\langle X_n \rangle$. If $\forall n > K$, does not Converge, them $\langle X_n \rangle$ is called divergent Sequence. Not that: K depend on ϵ only.

التغير الهندسي للتعريف التقارب

 $\begin{array}{l} (X_n \rightarrow x) \\ \texttt{y}_n \xrightarrow{} X_n \in X \\ \texttt{y}_n \xrightarrow{} X_n \in X_n \\ \texttt{y}_n \xrightarrow{} X_n \in X_n \\ \texttt{y}_n \xrightarrow{} X_n \in N \\ \texttt{y}_n \xrightarrow{} X_n \in N \\ \texttt{y}_n \xrightarrow{} X_n \in S \\ \texttt{y}_n \xrightarrow{} X_n \in S \\ \texttt{y}_n \xrightarrow{} X_n \xrightarrow{} X_n \in S \\ \texttt{y}_n \xrightarrow{} X_n \xrightarrow{} X_n = 1 \\ \texttt{y}_n \xrightarrow{} X_n \xrightarrow{} X_n = 1 \\ \texttt{y}_n \xrightarrow{} X_n \xrightarrow{} X_$

Ex: Let $\langle X_n \rangle$ be a seq. defined by $X_n = \begin{cases} n \text{ if } n \leq 50 \\ 3 \text{ if } n \geq 50 \end{cases}$. show that $\lim_{n \to \infty} X_n = 3$

Solution:

$$< X_n \ge 1,2,3, \dots, 50, 3, 3, 3, \dots$$

 $\forall \epsilon > 0, \exists k = 50 \text{ s. } t \ d(X,x) = |3-3| = 0 < \epsilon$

Ex: Show that $\lim_{n \to} X_n = 2$, where $\langle X_n \rangle = \langle \frac{2n-3}{n+1} \rangle$ Solution:

$$\begin{aligned} \forall \epsilon > 0 \text{, to find } K \in N \text{ s.t } d(X_n, x) < \epsilon, \forall n > k ? \\ d(X_n, x) &= \left| \frac{2n - 3}{n+1} - 2 \right| = \left| \frac{2n - 3 - 2(n+1)}{n+1} \right| = \left| \frac{2n - 3 - 2n - 2}{n+1} \right| \\ &= \left| \frac{-5}{n+1} \right| = \frac{5}{n+1} \\ \forall \epsilon > 0 \text{, by Arch. Property} \to \exists K \in N \ni \\ \forall k > 5 \to \frac{5}{\epsilon} < k. \\ \forall n > K \to n+1 > k+1 \text{ and } k+1 > k \text{, } k > \frac{5}{\epsilon} \\ &\Rightarrow n+1 > k+1 > k > \frac{5}{\epsilon} \\ \frac{1}{n+1} < \frac{\epsilon}{5} \text{, } \forall n > k \end{aligned}$$

Exc:

1. Let $\langle X_n \rangle = \langle \frac{2}{\sqrt{n}} \rangle$, show that $\lim_{n \to \infty} X_n = 0$ 2. Let $\langle X_n \rangle = \langle \frac{5n-4}{2-3n} \rangle$, show that $\lim_{n \to \infty} X_n = -\frac{5}{3}$ 3. Let $\langle X_n \rangle = \langle \frac{2-7n}{1-5n} \rangle$, show that $\lim_{n \to \infty} X_n = \frac{7}{5}$ Show that the following sequence are divergent 1. $\langle X_n \rangle = \langle \sqrt{n} \rangle$ 2. $\langle X_n \rangle = \langle (-1)^n \rangle$ 3. $\langle X \rangle \geq 3^n \rangle$

4.
$$< X_n > = < \frac{n^2}{2n-1} >$$

Theorem: If $\langle X_n \rangle$ is convergent sequence in (X, d), then $\langle X_n \rangle$ has a unique limit point.

Proof:

Suppose $\langle X_n \rangle$ has two limit points x and y with $x \neq y$ and $d(x, y) = \epsilon$ Since $X_n \rightarrow y \Longrightarrow \forall \epsilon > 0, \exists k_2 \in N \ s, t \ d(x, y) < \frac{\epsilon}{2}$ Let $k = \max\{k_1, k_2\}$ Since $d(x, y) \leq d(x, x_n) + d(x_n, y) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ $\Rightarrow d(x, y) < \epsilon, \forall \epsilon > 0$ This true only when $d(x, y) = 0 \Rightarrow x = y \rightarrow C!$ $\therefore \langle X_n \rangle$ has a unique limit point.

LCH (15)

Definition: A seq. $\langle X_n \rangle$ is called bounded the set $\{X_n : n \in N\}$ is bounded i.e. $\langle x_n \rangle$ is bounded if $\exists m \rangle 0$ s.t $d(x_n, x_m) \leq M$, $\forall n, \forall m$.

Ex:

1.
$$<\frac{(-1)^{n+1}}{n} > = 1$$
, $-\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{4}$, ...
 $|x_n| = \left|\frac{(-1)^{n+1}}{n}\right| = \frac{1}{n} \le 1 \implies < x_n > \text{ is bounded}$
and $M = 1$

2.
$$< 5 + \frac{(-1)^{n+1}}{n} > = 6$$
, $\frac{9}{2}$, $\frac{16}{3}$, ...
 $< x_n \ge 5 + \frac{1}{n} \le 5 + 1 = 6 \implies < x_n >$ is bounded
and $M = 6$

$$3. < n + (-1)^n > = \begin{cases} < n - 1 > , \text{ if } n \text{ is odd} \\ < n + 1 > , \text{ if } n \text{ is even} \end{cases}$$

4.
$$|x_n| = \begin{cases} |n-1| \ge 0\\ |n+1| \ge 2 \end{cases}$$

Theorem: In metric space. Every convergent sequence is bounded.

Proof:

Let $\langle x_n \rangle$ be a convergent sequence in (X, d) and $x_n \rightarrow x$, to prove $\langle x_n \rangle$ is bounded

Since $x_n \to x \implies \forall \epsilon > 0$, $\exists k \in N \text{ s. } t \ d(x_n, x) < \epsilon, \forall n > k$ That $\epsilon = 1 \implies d(x_n, x) < 1, \forall n \in k$. Let $r = \max\{1, d(x_1, x), d(x_2, x), \dots, d(x_n, x)\}$ $\implies d(x_n, x) < r$ $\therefore < x_n > \text{ is bounded and } M = 2r$

Remark: The convers of above theorem is not true.

Ex: $< (-1)^n > = -1, 1, -1, 1, ...$ $|x_n| = |(-1)^n| = 1 \implies < x_n > \text{is bounded and } M = 1$ $< (-1)^n > \text{is divergent}?$

Remake: If $\langle x_n \rangle$ unbounded, then $\langle x_n \rangle$ is divergent. Proof: Suppose that $\langle x_n \rangle$ converged and unbounded sequence. Since $\langle x_n \rangle$ Convergent $\rightarrow \langle x_n \rangle$ bounded by theorem (In metric space, every conv. Seq. is bounded) \rightarrow C!, So $\langle x_n \rangle$ unbounded is $\langle x_n \rangle$ is divergent

$$> < x_n > = <\sqrt{n-1} > = 0$$
, $\sqrt{1}$, $\sqrt{2}$, $\sqrt{3}$, ... unbounded $\Rightarrow < x_n >$ divergent

 $> < x_n > = < n^2 - n > = 0$, 2, 6, 11, ... unbounded $\Rightarrow < x_n >$ divergent

LCH (16)

Definition: Let $\langle x_n \rangle$ be a real sequence. Then it is called

- Non decreasing. If $x_{n+1} \ge x_n$, $\forall n$
- Non increasing. If $x_{n+1} \le x_n$, $\forall n$.
- Not monotone. If it does not increasing and decreasing.

Ex:

$$\begin{array}{l} * & < x_n > = < \frac{1}{\sqrt{n}} > \\ & x_n = \frac{1}{\sqrt{n}} \ , x_{n+1} = \frac{1}{\sqrt{n+1}} \\ & \forall n \ , n+1 > n \implies \sqrt{n+1} > \sqrt{n} \rightarrow \frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{2}} \rightarrow x_{n+1} \leq x_n \end{array}$$

 $\therefore < x_n > \text{is non-increasing}$

Theorem: Every monotone bounded real seq. is convergent

Ex: $\langle x_n \rangle = \langle \frac{(-1)^n}{n} \rangle > 0$ $\langle x_n \rangle$ Convergent seq. but not monotone.

Ex: Show that $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$ is convergent.

Theorem: Let (X, d) be a metric space and $S \subseteq X$: i. If $\langle x_n \rangle$ seq. in S and $x_n \rightarrow x$ then $x \in S$ or $x \in S'$ ii. If $x \in S$ or $x \in S'$, then there exists a sequence $\langle x_n \rangle$ in S s.t $x_n \rightarrow x$

Definition: The sequence $\langle x_n \rangle$ is a sub sequence of $\langle x_n \rangle$, if $\langle m \rangle$ is increasing sequence in N.

Ex: find a sub Seq. of the following seq.

1.
$$\langle x_n \rangle = \langle \sqrt{n} \rangle$$

Solution:
 $\langle \sqrt{n} \rangle = \sqrt{1}, \sqrt{2}, \sqrt{3}, ...$

LEC (17)

Let
$$< m > = < 2n >$$
 increasing Seq. in N, the Sequence is
 $< Xm > = < \sqrt{2n} > = \sqrt{2}, \sqrt{4}, \sqrt{6}, ...$

Let < m > = < n + 3 > increasing seq in N, the sub seq is $< m > = < \sqrt{n + 3} > = \sqrt{4}, \sqrt{5}, \sqrt{6}, ...$

Theorem: Let $\langle x_n \rangle$ be a convergent Seq and $\lim_{n \to \infty} X_n = x$ then the sub seq $\langle X_{nm} \rangle$ also conv. To x, where $n \to \infty$ Proof: Since $x_n \to x, \forall \epsilon > 0$, $\exists k \in N \text{ s. } t \ d(x_n, x) < \epsilon, \forall n > k$ Choose nr > k, then $\forall m > r \to nm > nr > k$ $\Rightarrow d(x_{nm}, x) < \epsilon, \forall nm > k$ $\Rightarrow \langle x_{nm} \rangle \to x.$

Definition: Let (X, d) be a metrices space and $\langle x_n \rangle$ be a seq. in X we say that $\langle x_n \rangle$ is a principle. (Caushy) seq. if $\forall \epsilon > 0, \exists k \in N \text{ s. } t \ d(x_n, x_m) < \epsilon, \forall n, m > k$.

Ex: prove that
$$<\frac{1}{n} >$$
 is Caushy seq in R?
Solution: $\forall \epsilon > 0$, to find $k \in N$ s.t $d(x_n, x_m) < \epsilon, \forall n, m > k, \forall n, m > k$.
Let $m > n \rightarrow d(x_n, x_m) = \left|\frac{1}{n} - \frac{1}{m}\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right| < \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$
Since $\epsilon > 0$ (by Arch. Prop) $\rightarrow \exists k \in N$ s.t
 $k\epsilon > 2 \rightarrow \frac{2}{k} < \epsilon$
 $\forall n > k, d(x_n, x_m) = |x_n - x_m| < \frac{2}{n} < \epsilon, \forall n, m > k \rightarrow < X_n >$ is Caushy seq

Theorem: I metric space (X, d), every Convergent seq. is Caushy.

Remark: The Converse of the above theorem. Is not true by the following example. Ex: Let $X = IR^{++}$ positive numbers $d(x, y) = |x - y|, \forall x, y \in R^{++}, \forall n > k$. $< x_n > = < \frac{1}{n} >$ is Caushy seq. But $\frac{1}{n} \to 0 \notin R^{++}$ $\therefore < \frac{1}{n} >$ is not Conv

Theorem: In metric Space (x, d) every Caushy seq. is bounded.

Ex: Let $\langle x_n \rangle = (-1)^n$ be a seq. $\langle x_n \rangle$ is bounded seq, but not Caushy Seq Since $d(-1,1) = 1 < \epsilon, \forall \epsilon > 0$ If $\epsilon = \frac{1}{2} \rightarrow 2 < \frac{1}{2} \rightarrow C!$

Theorem: For any real number r, \exists rational Caushy Seq $< x_n >$ Conv to r.

LEC (18)

Definition: Let(X, d) be a metric space we say that X is Compete. If every Cauchy Seq. In X coverage to a point in X.

i.e.: X is complete. If $\forall < X_n > \text{Cauchy Seq.} \rightarrow \exists \bar{x} \in X \text{ s. } t X_n \rightarrow X.$

Theorem: Cantor's theorem for Nested sets.

Proof:

Let (X, d) be a Complete matric Space and $\langle E_n \rangle$ be a seq of closed bounded Subset of X such that $E_1 \supset E_2 \supset \cdots \models E_n \supset E_{n+1} \forall n$ and the Sequence of Positive numbers $\langle daim E_n \rangle \rightarrow 0$, then $\cap E_n =$ Singleton point

Remark: The condition of closed sets of Cantor's theorem is necessary.

Ex: Let $E_n = (0, \frac{1}{n})$ be the open intervals, $E_{n+1} \subset E_n$, and $daim(E_n) = \frac{1}{n} \to 0, \forall n \in E_n$ is bounded and not closed. Prove that $\cap E_n = \emptyset$ Proof:

Suppose
$$\cap E_n \neq \emptyset \rightarrow \exists r \in E_n \ s.t$$

 $r \in \left(0, \frac{1}{n}\right), \forall n$
Since $r > 0$, by Arch.pvop, $\exists k \in N \ s.t$
 $kr > 1 \rightarrow \frac{1}{k} < r \rightarrow C!$
 $\Rightarrow \cap E_n = \emptyset$

Corollary: Let $\langle \pm n \rangle$ be aseq of closed intervals, $I_n = [a_n, b_n]$ such that 1. $I_n \supset I_{n+1}$ 2. $\lim_{n\to\infty} |I_n| = 0$, then $\cap I_n$ =singleton Point

Theorem: \mathbb{R}^n is Complete metric Space, $n \ge 1$

i.e.: (Every Cauchy sequence in \mathbb{R}^n is Convergent)

Theorem: Let $\langle X_n \rangle$, $\langle Y_n \rangle$ and $\langle Z_n \rangle$ real Sequence s.t $\forall n$, $X_n \leq Y_n \leq Z_n$ and $\lim_{n \to \infty} X_n = \lim_{n \to \infty} Z_n = a$ then $\lim_{n \to \infty} Y_n = a$

Theorem: let $\langle X_n \rangle$ be a real sequence such that $\langle X_n \rangle$ Converge to 0 and $X_n \ge 0$, p > 0 then $\langle X_n^p \rangle$ converges to 0

Proof:

$$\begin{aligned} &< X_n^p > = x_1^p , x_2^p , x_3^p , \dots \\ &\text{Since} < X_n > \to 0 \to \forall \epsilon > 0 , \exists k \in N \text{ s. } t \\ &|X_{n-0}| = |X_n| < \epsilon^p , \forall n > k \text{ and} \\ &|X_n . X_n . \dots X_n| = |X_n| |X_n| . \dots . |X_n| = |X_n|^p < \left(\epsilon^{\frac{1}{p}}\right)^p , \forall n > k \\ &< X_n^p > \to 0 . \end{aligned}$$

Chapter four

Infinite Series

Def: Let $\langle x_n \rangle$ be a real seq the series of the form, if $x_1 + x_2$ then it is Called infinite series, and it is written as $\sum_{n=1}^{\infty} x_n$.

If the series of the form $x_1 + x_2 + \cdots + x_n$, then it is Called finite Series.and written as $\sum_{k=1}^n x_k$

Def: Let $\sum_{n=1}^{\infty}$ an be a finite series, the seq $\langle S_n \rangle$ is called the sequence of Partial sums of $\sum_{n=1}^{\infty} a_n$

where $S_1 = a_1$

$$S_2 = a_1 + a_2$$

 $S_3 = a_1 - a_2 + a_3$
:
 $S_n = a_{1+}a_2 + \dots + a_n$

Def:

let $\sum_{n=1}^{\infty} a_n$ be infinite series, then it is said toble

- 1. Converge, if $\langle S_n \rangle$ converge
- 2. diverge, if $\langle s_n \rangle$ diverge.
- 3. If $\langle Sn \rangle$ Converge to b. then $\sum_{n=1}^{\infty} a_n = S_n$.

Example:

 $\Rightarrow \sum_{n=1}^{5}$ an is diverge.

Example: let $\sum_{n=1}^{\infty} a_n = 3 - 3 + 3 - 3 + \cdots$ $S_1 = a_1 = 3$ $S_2 = a_1 + a_2 = 3 - 3 = 0$ $S_3 = a_1 + a_2 + a_3 = 3 - 3 + 3 = 3$: $S_n = a_1 + a_2 + \cdots + a_n = \begin{cases} 3 & \text{, if } n \text{ odd} \\ 0 & \text{, if } n \text{ even} \end{cases}$ The Sequence of partial Sum $\langle S_n \rangle$ is divergent

 $\therefore \sum_{n=1}^{\infty} a_n$ is divergent

Example: Let: $\sum_{n=0}^{\infty} a_n = 2 + 4 + 2 + 4 + 24$ n = 1 $S_1 = a_1 = 2$ $S_2 = a_1 + a_2 = 2 + 4 = 6$ $S_3 = a_1 + a_2 + a_3 = 2 + 4 + 2 = 8$ $Sn = a_1 + a_2 + a_3 + a_4 = 2 + 4 + 2 + 4 + \dots =?$ The sequence of partial sums $\langle S_n \rangle$ is unbownded, then $\langle s_n \rangle$ is divergent so $\sum_{n=1}^{\infty} a_n$ is diverge

Exercises let $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, then $\sum_{n=1}^{\infty} a_n$ is convergent.

Harmonic Series

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \text{ divergent}$$

proof:

$$S_{1} = a_{1} = 1$$

$$s_{2} = a_{1} + a_{2} = 1 + \frac{1}{2}$$

$$S_{3} = a + a_{2} + a_{3} = 1 + \frac{1}{2} + \frac{1}{3}$$

$$S_{n} = a_{1} + a_{2} + \dots + a_{n-1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$S_{n+1} = a_{1} + a_{2} + \dots + a_{n} - a_{n-1} = 1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}$$

$$S_{n+n} = \frac{1}{2n} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

$$\det m = 2n$$

$$(S_m - S_n) = \left| \left(1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots + \frac{1}{2n} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right|$$
$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
$$> \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n}$$
$$= n \cdot \frac{1}{2n} = \frac{1}{2}$$

If $\epsilon = \frac{1}{2}$, then $|S_m - S_n| > \epsilon$ $\therefore \langle S_n \rangle$ is not Caushy sequence $\Rightarrow \langle S_n \rangle$ is not Convergent. So $\sum_{n=1}^{2} a_n$ is diverge.

Geometric Series

 $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \cdots$ where a > 0, r is called the base of Series. the sequence of partial, Sum is

 $sn = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$

(1) if |r| = 1 $\therefore S_n = a + a^{-1} + a + \dots + a = n \cdot a$ $\langle S_n \rangle = \langle n_a \rangle$ diverg $\Rightarrow \sum_{n=1}^{\infty} ar^{n-1}$ diverge.

(2) if
$$|r| > 1$$

 $S_n = a + ar + ar^2 + \dots + ar^{n-1}$
 $rS_n = ar + ar^2 + ar^3 + \dots + ar^n$
 $\Rightarrow S_n - rS_n = a - ar^n$
 $S_n(1-r) = a(1-r^n)$
 $\therefore S_n = \frac{a(1-r^n)}{(1-r)}$
When $n \Rightarrow \infty \Rightarrow \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1-r^n)}{(1-r)}$
 $= \frac{a(1-0)}{1-r} = \frac{a}{1-r}$
 $\therefore \sum ar^{n-1} = \frac{a}{1-r}$. Converge
(3) if $|r| > 1$
 $s_n = \frac{a(1-r^n)}{1-r}$

$$S_n = \frac{1-r}{1-r}$$
when $n \to \infty$; $r^n = \mp \infty \Rightarrow S_n \to \infty$
 \therefore Sn diverge.
 $\therefore \sum_{n=1}^{\infty} ar^{n-1}$ diverge.

$$\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \text{divenge} & \text{if } |r| > 1 \\ \text{Ganverge} & \text{if } |r| < 1 \end{cases}$$

$$=\sum_{n=1}^{\infty}ar^{n-1}-\frac{a}{1-r}$$

1

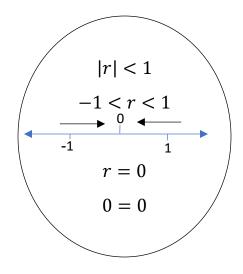
Example

Tet $\sum_{n=1}^{\infty} a_n = 1 + \frac{5}{2} + \left(\frac{5}{2}\right)^2 + \left(\frac{5}{2}\right)^3 + \cdots$ Geometric series.

$$a = 1, v = \frac{5}{2} \Rightarrow |r| = \left|\frac{5}{2}\right| = \frac{5}{2} > 1$$

 $\therefore \sum_{n=1}^{\infty} \text{ an divenge:} \\ \sum_{\Sigma=1}^{\infty} a_{n=1} = 1 - \frac{3}{4} + \frac{9}{16} \frac{27}{64} + \cdots \text{ Geometric Series.}$

$$\sum_{n=1}^{\infty} ar^{n-1} = 1 + \left(\frac{-3}{4}\right) + \left(\frac{-3}{4}\right)^2 + \left(\frac{-3}{4}\right)^3 + \cdots$$



$$a = 1, v = \frac{3}{4} \Rightarrow$$

$$|r| = \left| -\frac{3}{4} \right| = \frac{3}{4} < 1$$

$$\therefore \sum_{n=1}^{\infty} a_n \text{ is Converger and}$$

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} = \frac{15}{1+\frac{3}{4}} = \frac{1}{\frac{7}{4}} = \frac{4}{7}$$

Theorem:

If $\sum_{n=1}^{\infty}$ an Convergent, them $\lim_{n\to\infty} a_n = 0$ (that is, $\forall \in > 0, \exists k \in N, s. t | a_n - 0 | \langle \epsilon, y_n \rangle k$

proof Suppose $S_n = a_1 + a_2 + \dots + a_n$ $\sum_{n=1}^{\infty}$ an canvergent, then $\langle S_n \rangle$ Convergent

 $\Rightarrow \langle S_n \rangle \text{ canshy sequence.}$ $\therefore \forall \in > 0, \exists k \in N, \text{ sit } |S_m - s_n| < E, \forall n, m > k \\ \text{let } m = n + 1 \\ \text{So } |S_m - S_n| < \epsilon \rightarrow |S_{n+1} - S_n| = |a_{n+1}| < \epsilon , \forall > k \\ \rightarrow |a_n| < \epsilon , \forall n > k , \text{So } |a_n - 0| < \epsilon , \forall n > k. \\ \text{then } \lim_{n \to \infty} a_n = 0$

Example:

$$\langle a_n \rangle = \left\langle \frac{1}{n} \right\rangle \to 0$$

and $\lim_{n\to\infty} a_n = 0$ bul $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverse

هذ المثال يبين ان عكس المبر هنة أعلاه ليس صحيح

Corollary: If $\lim_{n\to\infty} a_n \neq 0$ diverge. proof: Suppose that $\sum_{n=1}^{\infty} a_n$ Convergent. then, $\lim_{n\to\infty} a_n = 0$, by theorem, $\rightarrow C$! Example

 $\sum_{n=1}^{\infty} a_n = \sum (\sqrt{m} - \sqrt{n-1})$ $\sum_{n=1}^{\infty} a_n \text{ Diverge, but } \lim_{n \to \infty} a_n = 0$

Exercises

(1) $\sum_{n^3}^{\infty} \frac{1}{\sqrt{n}}$ (2) $\sum_{n=1}^{a} \sqrt{\frac{n}{3n+5}}$ (3) $\sum_{n=1}^{\infty} \frac{n^3+2}{2n(n+5)}$

Theorem

If $\sum_{n=1}^{\infty}$ and $\sum_{n=1}^{\infty}$ bn are Convergent Series and $k \in R$, then (1) $\sum_{n=1}^{\infty} (an + b_n)$ convergent and $\sum_{n=1}^{\infty} (an + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ (2) $\sum_{n=1}^{m_n} ka_n$ convergent and $\sum_{n=1}^{\infty} ka_n = k \sum_{n=1}^{\infty} a_n$ proof: (1) let $\langle s_n \rangle$ be a sequence of partial sums of $\sum_{n=1}^{\infty} a_n$ and $\langle t_n \rangle$ bea seq of partipl sam of $\sum_{n=1}^{\infty} b_n$ $\sum_{n=1}^{\infty}$ an convergent, so $\exists s \in R$ s.t $\sum_{n=1} = s$ and $\langle Sn \rangle \to S \Rightarrow \lim_{n \to \infty} S_n = S$. also, $\sum_{n=1}^{\infty} b_n$ Canergent, then $\exists t = R$, s.t $\sum_{n=1}^{\infty} b_n = t$ and $\langle t_n \rangle \to t \to \lim_{n \to \infty} t_n = t$ $\lim_{n \to \infty} (s_n + t_n) \to S + t$, but $\langle s_n + t_n \rangle$ is the seq of partial sum of $\sum_{n=1}^{\infty} (an + b_n) \to$ $\sum_{n=1}^{\infty} a_{n+}b_n = \sum_{n+1}^{\infty} a_{n+}\sum_{n=1}^{\infty} b_n = s + t$

(2) let $\langle s_n \rangle$ be a seq of partial sums of $\sum_{n=1}^{\infty} a_n$ but $\sum_{n=1}^{\infty} a_n$ Convergent $\Rightarrow \exists s \in \mathbb{R}$ s,t $\sum_{n=1}^{\infty} a_n = s$ and $\langle S_n \rangle = S$, $\lim_{n \to \infty} s_n = S$.

, $\lim_{n\to\infty} k \ s_n = k$, $\lim_{n\to\infty} s_n = kS \to \langle k \ S_n \rangle \to k_s$ then $\sum_{ns_1}^2 ka_n = kS = k\sum_{n\leq 1}^{\infty}$ then $\sum_{n=1}^{\infty} ka_n = k\sum_{n=1}^{\infty} a_n$

Exercises

(1) Given an example for two divergent Sories but their Sum is Convergent Series. Sol:

let $\sum_{n=1}^{\infty} = \sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} -\frac{1}{n}$ the $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n}\right) = \sum_{n=1}^{\infty} 0 = 0$ con and $\langle a_n + b_n \rangle \to 0$

اختبار المتسلسلات Series test

(1) Comparison test: Theorem: If $0 \le a_n \le b_n \forall n \in N$, then

(1) $\sum_{n=1}^{\infty}$ bn convergent, then $\sum_{n=1}^{\infty}$ an Canvergont (2) $\sum_{n=1}^{\infty} a_n$ divergent, then $\sum_{n\leq 1}^{\infty}$ bn divergent

`of partial sums of $\sum_{n=1}^{\infty} b_n \sin 0 \leq an \leq b_n$, then $S_n = a_1 + a_2 + a_3 + \dots + a_n$ $\leq b_1 + b_2 + b_3 + \dots + b_n$ $= t_n$ but $\sum_{n=1}^{\infty} b_n$ Convergent, thei $\langle t_n \rangle \Rightarrow$ t as $n \to \infty$ $b_n \ge 0 \Rightarrow \langle t_n \rangle$ increasing seq and $t_n \le t$, \forall_n and $S_n \leqslant t_n$, $\forall n$, the $S_n \leqslant t$, $S_0 \langle s_n \rangle$ is bounded

 $\rightarrow \langle S_n \rangle$ is bounded and increasing (mono ton) $\Rightarrow \langle s_n \rangle$ Convergent sequence

 $\Rightarrow \sum_{ns}^{\infty}$ an Cowlergint.

(2) Suppose $\sum_{n=1}^{\infty}$ bn Converyont

by (1), $\sum_{n=1}^{\infty}$ an Convergent and $\rightarrow C!$, so $\sum_{n,1}^{\infty} b_n$ divergent

$$\begin{split} & \mathsf{P}-\mathsf{series} \\ & \sum_{n=1}^{\infty} \frac{1}{n^p}, \quad p > 0. \\ & \sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots \\ & \sum_{n=1}^{\infty} \frac{1}{n^p} = \begin{cases} \mathrm{Canerge} & \mathrm{if} \ p > 1 \\ \mathrm{diveng} & \mathrm{if} \$$

Examples (0) $\sum_{n=1}^{\infty} \frac{1}{5n^3} = \frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n^3}$, p = 3 > 1then P - Series $\rightarrow p = 3$ \lambda, sa Caniergent (2) $\sum_n \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{t}}}$, $p^{-1} \frac{1}{2} < 1$ Then p series, $P = \frac{1}{2} < 1$, d inevgent

Theuron.

let Lan and $\sum b_n$ be posifive term Series s.t $\lim_{n\to\infty} \frac{a_n}{b_n} = L \neq 0$

then Example: D) $\sum^{\infty} n^3 - 1$ $n = 04n^5 - 3n^2 + 3$ $a_n = \frac{n^{3-1}}{4a^5 - 3n^2 + 3} \ge 0$, choose bns $\frac{1}{n^2}$ to Compave \sum thans $\sum \frac{1}{n^2}$ Convergant (*p*-sories p = 2 > 1)

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 1 \ln \frac{n^3 - 1}{4n5 - 3n^2 + 3} \div \frac{1}{n^2}$$
$$= \lim_{n \to \infty} = \frac{n^5 - n^2}{4n^5 - 3n^2 + 3} = \lim_{n \to \infty} \frac{\frac{n^5}{n5} - \frac{n^2}{n^5}}{4\frac{n^5}{n^5} - 3\frac{n^2}{n^5} + \frac{3}{n^5}}$$
$$= L_{n \to \infty} \frac{1 - \frac{1}{n^3}}{4 - \frac{3}{n^3} + \frac{3}{n^5}} = \lim_{n \to \infty} \frac{1}{4} = \frac{1}{4} = 0$$

by theoramabove $\sum_{n=0}^{\infty}$ an Convargant. $\left(2\sum_{n=0}^{\infty}\frac{2n+1}{n^2+2n+1}\right)$

(3) Ratiotest) a.mil sl: in. 1 - If $b < 1 \Rightarrow \sum$ an Cowergent. 2 if $h > 1 \Rightarrow 2$ an divergent. 3 -if $b = 1 \Rightarrow$ no infurmations. Examples (1) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$ (2) $\sum_{n<0}^{\infty} \frac{n}{3^n}, \cdots$ Convergant.

(2) $\sum_{n<0}^{2} n^{2}$

let $a_n = n^2$, $a_n + (n+1)^2$

 $L_{n \to \infty} \frac{a_n + 1}{a_n} = 1 \operatorname{mim}_{n \to \infty} \frac{(n+1)^2}{n^2} = \frac{1, m \frac{n^2 + 2n + 1}{n^2}}{n^2}$ $\lim_{n \to \infty} \frac{\frac{n^2}{n^2} + \frac{2n}{n^2} + \frac{1}{n^2}}{n^2} = \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{n^2} = 1$ $\therefore b = 1, bw + \sum_{n=1}^{\infty} n^2$ is divergent $(4)\sum_{ni0}^{\infty}\frac{1}{n^2}$ lel ans $\frac{1}{n^2}$, – avit = $\frac{1}{(n+1)^2}$ $= \operatorname{Lim}_{n^{2}+2n+1} = \operatorname{lim}_{n \to \infty} \left(\frac{1}{1+0}\right) = \operatorname{Lim}_{n \to \infty} |= 1$ So b = 1but $\sum \frac{1}{n^2}$ is Canventi, 5 ina p = 2 > 1Theorem tet \sum_{n+1}^{m} be a series, ax > 0, $\forall n$, if $\exists b \in R$ sit $n\sqrt{a_n} = b$ 1 - if $b < 1 \Rightarrow \$ 2 - if $b > 1 \rightarrow enp di$ 3 if be1 \Rightarrow no is Por matios. Examples: Is the Pollowing Sarics Gurmergent? $(1) \sum \frac{5n}{2(3)^n}$ let $a_{in} = \frac{5n}{2(3)} > 0$ $\lim_{n \to \infty} \sqrt{\frac{5n}{2(3)^n}} = L \cdot m - \sqrt{\frac{5}{2}} \cdot \frac{\sqrt[n]{n}}{\sqrt[3]{3^n}} = \lim_{n \to \infty} \sqrt{\frac{5}{2}} \cdot \frac{\sqrt{n}}{3} = 1 \cdot \frac{1}{3} = \frac{1}{3}$ $=1\cdot\frac{1}{3}=\frac{1}{3}$ $b = \frac{1}{3} \left(1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ Convergent.} \right)$ Excersices: $\sum_{n=1}^{n} 2^{2}$

Defintion The number *e*

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Remark

The Series
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$
 is Convergent Serice.
prosp $s_n = 1 + \frac{1}{1!} + \frac{1}{2t} + \frac{1}{s^T} + \dots + \frac{l}{n!}$
 $= 1 + 1 + \frac{1}{2 \times 1} + \frac{1}{3 \times 2 \times 1} + \frac{1}{4 \times 3 \times 2x_1} + \frac{1}{n!}$
 $= 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots + \frac{1}{n!}$
 $< 1 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{(n-1)}}$
 $= 1 + 1 + \frac{1}{2} + \frac{1}{t^2} + \frac{1}{2^3} + \frac{11 + -1}{x^{n-1}}$
 $\frac{1/2}{1/2} = 1 \Rightarrow \operatorname{sn} \langle t + 1 + 1 \rangle$

$$\therefore S_n \langle 3 \Rightarrow \langle S_n \rangle$$
 boumided and increasing $\Rightarrow \langle sn \rangle$ Canverge

= 3

Excersices prave that $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)$ Example prove theat e is irpational Aumber 05 Suppase e is ralional number $\Rightarrow 3m, n > 0$ sit $e=\frac{m}{n}$. $\therefore e = \sum_{n=0}^{\infty} \frac{1}{n!} \Rightarrow S_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \infty + \frac{1}{n!}$ $e - 5n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!}$ $=\frac{1x}{(n+1)!}\left[i+\frac{1}{(n+2)}+\frac{1}{(n+3)(n+2)}+\infty\right]$ $<\frac{1}{(n+1)!}\left[1+\frac{1}{(n+1)}+\frac{1}{(n+1)^2}+\right]$ $=\frac{1}{(n+1)!}, \frac{n+1}{n} = \frac{1}{n+1}, \frac{n+1}{n} = \frac{1}{n \cdot n!}$ $(n!)e \in N$ since $nl_1 = n! \frac{m}{n} = n(n-1)! \frac{m}{n}$ $= (n-1)! m \in N$ eand n!s $n = n! \left(1 + 1 + \frac{1}{2!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right)$

$$= n! + n! + \frac{n1}{2!} + \frac{n!}{3!} + \dots - 1$$

Since $n \ge 1 \Rightarrow 3$ natwal number (e - 5n)n!sil $0 < e - 5_n < \frac{1}{n} < 1$ by (1) - C!e is inpational amariber

• Alternating Series aj 23 4 *a* al

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - 44 +$$

or $_{n=1}(-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots$

Theoren (Alternating Series test)

The series $\sum_{n=1}^{\infty} (-2)^{n-1} a_n$ + is Convergent if

(1) $a_n > 0, v_n$

(e) $a_{n+1} \leq 0, vn$

(3) Lim an = 0

Example Is the fallewing shries are Comergent.

(1)
$$\sum_{n \leq 1}^{\infty} \frac{(-1)^n}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

$$a_{n} = \frac{1}{n} > 0, an + 1 = \frac{1}{n+1} < \frac{1}{x} = a_{n}, \lim_{n \to \infty} \frac{1}{n} = 0 = \sum_{n=1}^{n} \frac{(-1)^{n}}{n}$$
 Gonvergent.
8
$$\left(2\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}\right)?$$

Absolule and Comditional Convergencen)

Pejintion (Absetutely Covergant)

A series Σ an is Called absolutely convergena is the associated series Σ lanl Garvergent. Definition (Conditionally Convergent).

A series $\sum a_n$ is guled Conditionally Convergent if the sseciated series \sum_a Covengentbut \sum land divengent

(1) lel
$$\sum a_n = \sum_{n=0}^{\infty} \frac{(-1)^4}{2^n}$$

 $\Rightarrow \Sigma |an| = \sum_{n=0}^{\infty} |\frac{(-y)^n}{2^n}| = \sum_{n=0}^{\infty} \frac{1}{2^n}$, Geometric saries

(2) let
$$\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^2}{n+1}$$

i $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ not alosolutely Cowengent).
 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$

 $a_n = \frac{l}{n+1}, a_{n_7 1} = \frac{1}{n+2} < \frac{1}{n+1} = \text{cm}$ $\therefore \sum_{n+1}^{\frac{\sum (-1)^n}{n+1}} \text{Conditiontity convergent}$ Thearem $\Rightarrow \langle 5n \rangle \text{ is Cauthy seq.}$

If (t_n) is a seq if partial sions of \suman $\Rightarrow t_n = a_1 + a_2 + \dots + a_n$ and $\Rightarrow \langle \text{tn} > \text{canchy ser.} \rangle$

 $\Rightarrow \langle t_n \rangle$ convergent \Rightarrow 2an Convengant

If Eang 5 bn Cowvergant series.

Is $\sum a_n \cdot \sum b_n - (a_n + a_n + c) \cdot (l_1 + b_i + a_1(b_1 + b_t + y) + a_2(b_1 + b_{2x}) + \cdots$ Camergent?

Definitin(Cavshy produch of Series)

let $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} b_n$ be twa Suries and $C_{n=\sum_{k=1}^{n} a_k b_{n-k}} = a_{10}bn + a_1b_{n-1} + \dots + a_nb_0$ Example $\sum_{n=0}^{\infty} a_n + \sum_{n>0}^{\infty} b_n$ not Convergent

$$= 1 - \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}}\right)$$

(power Series A series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + ax + a_2 x^2 + 93x^3 + \cdots$$

where $x \in R$ is Called power scriesin xExc shew that $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is Convergant

وفي الختام نسأل الله التوفيق

اللهم قني عذابك

يوم تبعث عبادك