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Axioms of real numbers  

1. The axioms arithmetics 



 

2. The axioms of ordered  

3. The complete Axioms  

* Let R be a real number and 𝑎, 𝑏, 𝑐 ∈ 𝑅. Then  

𝐴1 ∶ ∀𝑎, 𝑏, 𝑐 ∈ 𝑅  𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐.  

𝐴2 ∶ 𝑎 + 𝑏 = 𝑏 + 𝑎 

𝐴3 ∶ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎 ∈ 𝑅, ∃! 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 0 ∈ 𝑅  𝑠. 𝑡 

        𝑎 + (−𝑎) = −𝑎 + 𝑎 = 0 

𝐴4 ∶ 𝑇ℎ𝑒𝑟 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 0 ∈ 𝑅 , 𝑆. 𝑡 

        𝑎 + 0 = 0 + 𝑎 = 𝑎 

       Then (𝑹, +) is a commutative group. 

𝐴5 ∶ 𝑎. (𝑏. 𝑐) = (𝑎. 𝑏). 𝑐  

𝐴6 ∶ 𝑎. 𝑏 = 𝑏. 𝑎 

𝐴7 ∶  ∃! Element in 𝑅(1 ∈ 𝑅 ) 𝑠. 𝑡 𝑎. 1 = 1. 𝑎 = 𝑎 

𝐴8 ∶  ∀𝑎 ∈ 𝑅 , ∃! 𝑎−1 ∈ 𝑅 , 𝑠. 𝑡 𝑎. 𝑎−1 = 𝑎−1. 𝑎 = 1 

        Form 𝑨𝟓 → 𝑨𝟖 . (𝑹, . ) commutive ring 

𝐴9 ∶ 𝑎. (𝑏 + 𝑐) = (𝑎. 𝑏) + (𝑎. 𝑐) 

          𝐴1 → 𝐴9  (𝑅, +, . ) Is a field  

 

Def:  

 Subtraction   𝑎 − 𝑏 = 𝑎 + (−𝑏) , ∀𝑎, 𝑏 ∈ 𝑅 

 Division        𝑎 ÷ 𝑏 = 𝑎. 𝑏−1 ∋ 𝑏 ≠ 0 

The Axioms of order: 

𝐴10: 𝑎 ≤ 𝑏 𝑜𝑟 𝑏 ≤ 𝑎 

𝐴11: 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑐 → 𝑎 = 𝑏 

𝐴12: 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐 

𝐴13: 𝑎 ≤ 𝑏 , 𝑐 ∈ 𝑅 → 𝑎 + 𝑐 ≤ 𝑏 + 𝑐 

𝐴14: 𝑎 ≤ 𝑏 , 𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 → 𝑎. 𝑐 < −𝑏. 𝑐 

        𝐴1 → 𝐴14 , (𝑅, + , . , ≤) order field. 

Remark:  

𝑅+ = {𝑥 ∈ 𝑅 ; 𝑥 > 0}  

𝑅− = {𝑥 ∈ 𝑅 ; 𝑥 < 0}  
 

 

Propositions: Let (𝑅, +, . ) be a field, then prove the following  

1. ∀𝑎, 𝑏, 𝑐 ∈ 𝑅 , 𝑖𝑓 𝑎 + 𝑏 = 𝑏 + 𝑐 , 𝑡ℎ𝑒𝑛 𝑎 = 𝑐 

2. ∀𝑎, 𝑏, 𝑐 ∈ 𝑅 , 𝑖𝑓 𝑎. 𝑏 = 𝑐. 𝑏  , 𝑡ℎ𝑒𝑛 𝑎 = 𝑐 



 

3. ∀𝑎, 𝑏 ∈ 𝑅 ,prove that: 

1. −(−𝑎) = 𝑎 

2. (𝑎−1)−1 = 𝑎 

3. (−𝑎) + (−𝑏) = −(𝑎 + 𝑏) 

4. (−𝑎). 𝑏 = −𝑎, 𝑏 

5. 𝑖𝑓 𝑎. 𝑏 = 0 then either 𝑎 = 0 𝑜𝑟 𝑏 = 0 

Proof (5): 

Let 𝑎 ≠ 0 , T.P 𝑏 = 0 

Since 𝑎 ≠ 0 , then ∃𝑎−1 ∈ 𝑅 𝑠. 𝑡  𝑎. 𝑎−1 = 1 

𝑎−1(𝑎. 𝑏) = 0 

(𝑎−1. 𝑎). 𝑏 = 0 

1. 𝑏 = 0 → 𝑏 = 0 

 

Let 𝑏 ≠ 0 , T.P 𝑎 = 0 

Since 𝑏 ≠ 0 , then ∃𝑏−1 ∈ 𝑅 𝑠. 𝑡  𝑏. 𝑏−1 = 1 

(𝑎. 𝑏)𝑏−1 = 0 

𝑎. (𝑏. 𝑏−1) = 0 

𝑎. 1 = 0 → 𝑎 = 0 

 

Absolute Value: 

let 𝑎 ∈ 𝑅 , the absolute value of a is: 

|𝑎| = {

𝑎                     𝑖𝑓 𝑎 > 0
0                     𝑖𝑓 𝑎 = 0

−𝑎                       𝑖𝑓 𝑎 < 0
 

|𝑎|: 𝑅 → 𝑅+ ∪ {0} is the function of absolute value. 

 

Properties of absolute value. 

Theorem: let a be a real number, then 

1. |𝑥| < 𝑎 ↔ −𝑎 < 𝑥 < 𝑎 

2. |𝑋| > 𝑎 ↔ 𝑥 > 𝑎 𝑜𝑟 𝑥 < −𝑎 

 

 

 

Corollary: let 𝑎 ∈ 𝑅+ and 𝑏 ∈ 𝑅, then 

1. |𝑥 − 𝑏 ≤ 𝑎 𝑖𝑓𝑓 𝑏 − 𝑎 ≤ 𝑥 ≤ 𝑏 + 𝑎 

2. |𝑥 − 𝑏| ≥ 𝑎 𝑖𝑓𝑓 𝑥 ≥ 𝑏 + 𝑎  𝑜𝑟  𝑥 ≤ 𝑏 − 𝑎 



 

 

Let 𝑎, 𝑏 ∈ 𝑅 and k be areal number, then 

1. |𝑎| ≥ 0 

2. |𝑎| = 0 iff 𝑎 = 0 

3. 𝑎2 = |𝑎|2 

4. |𝑎𝑏| = |𝑎|. |𝑏| 

5. |
𝑎

𝑏
| =

|𝑎|

|𝑏|
 

6. |𝑘𝑎| = |𝑘|. |𝑎| 
 

Example: ∀𝑎 ∈ 𝑅 , √𝑎2 = |𝑎| 
Proof: 

If 𝑎 > 0 then √𝑎2 = 𝑎 

If 𝑎 < 0 then √𝑎2 = −𝑎 

by def absolute value to a we have 

|𝑎| = {
𝑎 = √𝑎2  𝑖𝑓   𝑎 ≥ 0

−𝑎 =  √𝑎2  𝑖𝑓  𝑎 < 0
  

|𝑎|وفي كلتا الحالتين يكون لدينا  = √𝑎2  

The triangle inequality 

Theorem: if 𝑎, 𝑏 ∈ 𝑅, then |𝑎 + 𝑏| ≤ |𝑎| + |𝑏  

Proof: 

|𝑎 + 𝑏|2 = (𝑎 + 𝑏)2 ≤ 𝑎2 + 2𝑎𝑏 + 𝑏2  

≤ |𝑎|2 + 2|𝑎𝑏| + |𝑏|2  

≤ (|𝑎| + |𝑏|)2  

∴ |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|  
 

Corollary: if 𝑎, 𝑏 ∈ 𝑅,  then |𝑎 − 𝑏| ≥ |𝑎| − |𝑏| 
 

 

 

 

 

LCH (2) 

 



 

Def: let 𝑆 ⊂ 𝑅 S is said to be bounded above if there is some real numbers m s.t 𝑥 ≤ 𝑚 

∀𝑥 ∈ 𝑆, m is called upper bounded of S 

 

 

LCH (3) 

 

Proposition: 

If ∅ ≠ 𝑆 ⊂ 𝑅 and sup(𝑆) = 𝑀, then ∀𝑝 < 𝑀  ∃𝑥 ∈ 𝑆 s.t 𝑝 < 𝑥 ≤ 𝑀 

i.e.: if sup(𝑆) = 𝑀 then ∀𝜖 > 0 , ∃𝑥 ∈ 𝑆 s.t 𝑀 − 𝜖 < 𝑥 ≤ 𝑀 

proof:  

let sup(𝑆) = 𝑀 then ∀𝑥 ∈ 𝑆, 𝑥 ≤ 𝑀 

T.P   ∀𝑥 ∈ 𝑆 , 𝑝 < 𝑥 ? 

Suppose that 𝑥 ≤ 𝑝 , ∀𝑥 ∈ 𝑆 

→ p is upper bounded for S, but by hypothesis 𝑝 < 𝑀 = sup(𝑆) ………. C! 

∴  ∃ 𝑥 ∈ 𝑆 ∋ 𝑝 < 𝑥 ≤ 𝑀.  
 

Theorem: The set N of natural numbers is unbounded above in R 

Proof: 

Suppose N is bounded above. 

By completeness axiom  

N has a supreme M 

Let sup(𝑁) = 𝑀 

From proposition above ∃𝑛 ∈ 𝑁 s.t 𝑀 − 1 < 𝑛 < 𝑀. 

Then 𝑀 − 1 < 𝑛 → 𝑀 < 𝑛 + 1 , 

But 𝑛 + 1 ∈ 𝑁 

And 𝑛 + 1 > 𝑀 = sup(𝑁) → 𝐶!  
Therefore, N is unbounded above 

 

Theorem: Archimedan property  

If 𝑥 ∈ 𝑅++ then for any 𝑦 ∈ 𝑅, there exists 𝑛 ∈ 𝑁 s.t 𝑛 > 𝑦 

 

Def: let F a field, F is called Archimedean filed, if for any 𝑥 ∈ 𝐹, ∃𝑛 ∈ 𝑁 s.t 𝑛 > 𝑥 

        i.e.: N is abounded above in F 

Ex:  

1. R is Archimedean field 

2. Q is Archimedean field 



 

3. 𝑠 = {𝑎 + 𝑏√2 ∶ 𝑎, 𝑏 ∈ 𝑄} is Archimedean field 

 

Theorem: Denseness property  

Between any two distinct reals, there exists infinitely many rationales and 

irrationals  

  

LCH (4) 

Def: (irrational numbers Q’ ) 

Let Q’ be a complement of Q in the real number R. 

i.e.: 𝑄′ = 𝑅 − 𝑄, we called is set of irrational numbers  

remark: 𝑅 = 𝑄 ∪ 𝑄′ 

Theorem: prove that √2 is irrational number  

               i.e.: There are no rational numbers whose square is 2 

               i.e.: ∄ 𝑥 ∈ 𝑄 ∋ 𝑥2 = 2 

proof: 

suppose √2 is rational number i.e. √2 =
𝑚

𝑛
 

So 2 =
𝑚2

𝑛2  , then 𝑚2 = 2𝑛2 

Case 1: 

m and n are odd. 

Since m is odd → 𝑚2 is odd 

Since n is odd → 𝑛2 is odd 

But 2𝑛2 is even →  𝑚2 = 2𝑛2 → 𝐶! 
Case 2: 

m is even and n is odd, then 𝑚 = 2𝑝 

and 𝑚2 = 4𝑝2 , → 4𝑝2 = 2𝑛2 → 2𝑝2 = 𝑛2 → 𝐶! 
Case 3: 

m is odd and n is even, then, since m is odd 

→ 𝑚2 is odd, and 2𝑛2 is even → 𝑚2 = 2𝑛2 → 𝐶! 

∴  √2 is irrational number 

 

Theorem: Q is not Complete field  

 

Theorem: for every real 𝑥 > 0 and every integer 𝑛 > 0 there is one and only one 

positive real y such that 𝑦𝑛 = 𝑥 



 

                i.e.:∀𝑥 > 0 , ∀𝑛 ∈ 𝑁 , ∃! , 𝑦 ∈ 𝑅+ 𝑠. 𝑡 𝑦 = √𝑥
𝑛

  

 

Theorem: if 
𝑚

𝑛
 and 

𝑝

𝑞
 are rationales and 𝑞 ≠ 0 then 

𝑚

𝑛
+ √2

𝑝

𝑞
 is irrational number 

Proof: 

Suppose 
𝑚

𝑛
+  √2 

𝑝

𝑞
 is rational 

Then there is 𝑟, 𝑠 ∈ 𝑍 , 𝑠 ≠ 0 𝑠. 𝑡 
𝑚

𝑛
+  √2

𝑝

𝑞
=

𝑟

𝑠
 

So √2
𝑝

𝑞
=

𝑟

𝑠
−

𝑚

𝑛
→  √2 =

𝑝

𝑞
(

𝑟𝑛−𝑠𝑚

𝑠𝑛
) ∈ 𝑄  

So 2 = (
𝑞(𝑛𝑟−𝑠𝑚)

𝑝𝑠𝑛
)

2
→ !  with theorem:   ∄ 𝑥 ∈ 𝑄 ∋ 𝑥2 = 2 

Theorem: Between any two distinct rationales there is an irrational number. 

 

LCH (5) 

 

Ex:  

1. Prove 𝑥2 ≥ 0 , ∀ 𝑥 ∈ 𝑅  

2. Let 𝑎, 𝑏 be tow real s.t 𝑎 ≤ 𝑏 + 𝜖 ∀ 𝜖 > 0 then 𝑎 ≤ 𝑏 

Proof (2): 

Suppose 𝑎 > 𝑏 

Then 𝑎 + 𝑎 > 𝑏 + 𝑎 
2𝑎

2
>

𝑏+𝑎

2
  

𝑎 >
𝑏+𝑎

2
    ………….(1) 

Take 𝜖 =
𝑎−𝑏

2
> 0   (Since 𝑎 > 𝑏 , then 𝑎 − 𝑏 > 0 →

𝑎−𝑏

2
> 0)  

𝑎 ≤ 𝑏 + 𝜖 → 𝑎 ≤  𝑏 +
𝑎−𝑏

2
=

2𝑏+𝑎−𝑏

2
=

𝑎+𝑏

2
< 𝑎  

                            From (1) ……………. C! 

𝑎 ≤ 𝑏  

 

Ex:  

1. 𝑄 is order field  (𝐴1 →  𝐴14) 

2. C is field but not order 

since: if 𝑥 = 1 → 𝑥 = √1 → 𝑥2 = −1 < 0 → 𝐶!  

since: (𝑥2 ≥ 0 , ∀𝑥 ∈ 𝑅) 

Metric space 



 

Def: let X be anon-empty set and 𝑑: 𝑋 × 𝑋 → 𝑅+ be a mapping. We say that order 

(𝑋, 𝑑) is metric space if it is satisfying the following: 

1. 𝑑(𝑥, 𝑑) ≥ 0 , ∀𝑥, 𝑦 ∈ 𝑋 

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)       

4. 𝑑(𝑥, 𝑦) = 0 ↔ 𝑥 = 𝑦 

 

Not: 𝑑 is called metric mapping  

        𝑑(𝑥, 𝑦) is a distance between x and y 

 

Remark: A mapping 𝑑: 𝑋 × 𝑋 → 𝑅+ is called a pseudo metric for X iff d satisfies 

(1,2,3) in the above definition and 𝑑(𝑥, 𝑥) = 0 , ∀𝑥 ∈ 𝑋 

 

Cauchy - Shwarz inequality 

Let 𝑎 = (𝑎1, 𝑎2 , … , 𝑎𝑛)  𝑎𝑛𝑑  𝑏 = (𝑏1 , 𝑏2 , … 𝑏𝑛) be two tripe of complex number , 

then: 

 ∑|𝑎𝑖 + 𝑏𝑖|

𝑛

𝑖=1

≤ (∑|𝑎𝑖|2

𝑛

𝑖=1

)

1
2

. (∑|𝑏𝑖|2

𝑛

𝑖=1

)

1
2

 

 

Minkowskis inequality 

(∑|𝑎𝑖 + 𝑏𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

≤ (∑|𝑎𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

+  (∑|𝑏𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

     , 𝑝 ≥ 1 

Ex: if 𝑋 = 𝑅 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| , show that (X,d) is a metric space. 

Solution: 

1. 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| ≥ 0    by def. of Absolute value 

2. 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = |−(𝑦 − 𝑥)| = |𝑦 − 𝑥| = 𝑑(𝑦, 𝑥)  

3. 𝑑(𝑥, 𝑧) = |𝑥 − 𝑧| = |𝑥 − 𝑦 + 𝑦 − 𝑧| 

                                 ≤ |𝑥 − 𝑦| + |𝑦 − 𝑧|  

                              = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

4. 𝑑(𝑥, 𝑦) = 0  iff 𝑥 = 𝑦 

𝑑(𝑥, 𝑦) = 0  iff |𝑥 − 𝑦| = 0 

                     iff 𝑥 − 𝑦 = 0 

                     iff 𝑥 = 𝑦 



 

∴ (𝑋, 𝑑) is a metric space  

 

Discrete metric space  

Let 𝑋 ≠ ∅ and 𝑑: 𝑋 × 𝑋 → 𝑅 s.t  

𝑑(𝑥, 𝑦) = {
0  𝑖𝑓 𝑥 = 𝑦
1  𝑖𝑓 𝑥 ≠ 𝑦

 

∀𝑥, 𝑦 , show that (𝑋, 𝑑) is metric space  

Solution: 

1. 𝑑(𝑥, 𝑦) ≥ 0 , ∀𝑥, 𝑦 ∈ 𝑋  (by def. d) 

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) ? 

if 𝑥 = 𝑦 → 𝑑(𝑥, 𝑦) = 0 = 𝑑(𝑥, 𝑦) 

if 𝑥 ≠ 𝑦 → 𝑑(𝑥, 𝑦) = 1 = 𝑑(𝑦, 𝑥) 

3. Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 T.P 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ? 

if 𝑥 = 𝑧 then 𝑑(𝑥, 𝑧) = 0 

since 𝑑(𝑥, 𝑦) ≥ 0  and 𝑑(𝑦, 𝑧) ≥ 0 then 

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

if 𝑥 ≠ 𝑧 then 𝑑(𝑥, 𝑧) = 0 

since 𝑑(𝑥, 𝑧) = 1 and either 𝑥 ≠ 𝑦 𝑜𝑟 𝑥 ≠ 𝑧 , 𝑦 = 𝑧 

either: 𝑑(𝑥, 𝑧) = 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑧) = 1 

      or: 𝑑(𝑥, 𝑧) = 𝑑(𝑥, 𝑦) = 1 and 𝑑(𝑦, 𝑧) = 0 

  then: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                  1    ≤      1      +    1 

                  1    ≤      1      +    0 

 

 

LCH (6) 

 

Ex: show that (𝑋, 𝑑) is pseudo metric space but not metric where 

       𝑑: 𝑋 × 𝑋 → 𝑅 , 𝑑(𝑥, 𝑦) = |𝑥2 − 𝑦2|  , 𝑓𝑜𝑟𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑅. 
Solution:  

Let 𝑥, 𝑦, 𝑧, ∈ 𝑅  

1- 𝑑(𝑥, 𝑦) = |𝑥2 − 𝑦2| ≥ 0  , by def Abs. Value 

2-  𝑑(𝑥, 𝑦) = |𝑥2 − 𝑦2| = |−(𝑦2 − 𝑥2)| = |𝑦2 − 𝑥2| = 𝑑(𝑦, 𝑥)  

3- 𝑑(𝑥, 𝑦) = |𝑥2 − 𝑦2| = |𝑥2 − 𝑧2 + 𝑧2 − 𝑦2| ≤ |𝑥2 − 𝑧2| + |𝑧2 − 𝑦2| 

                                                                        ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 



 

4- 𝑑(𝑥, 𝑥) = |𝑥2 − 𝑥2| = 0 , ∀𝑥 ∈ 𝑅 

∴ (𝑋, 𝑑) pseudo metric space but not metric space,  

since, if 𝑑(𝑥, 𝑦) = 0 → |𝑥2 − 𝑦2| = 0 →  𝑥2 − 𝑦2 = 0 → 𝑥2 = 𝑦2 

→ 𝑥 = 𝑦 

ex: let 𝑥 = 1 , 𝑦 = −1  

then 𝑑(𝑥, 𝑦) = 𝑑(1, −1) = | 12 − (−1)2| = 0, but 1 ≠ −1 

 

Def: let (𝑋, 𝑑) be a metric space 𝑆, 𝑇 ⊆ 𝑋 , 𝑝 ∈ 𝑆 then  

1- The distance between p and S is  

𝑑(𝑝, 𝑆) = inf{𝑑(𝑝, 𝑥) ∶ 𝑥 ∈ 𝑆}  

2- The distance between S and T is  

𝑑(𝑆, 𝑇) = inf{𝑑(𝑥, 𝑦) ∶ 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 }  

3- Diameter of S is 𝑑(𝑆) = sup{𝑑(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ 𝑆}   

4- S is called bounded, if ∃ 𝑀 ∈ 𝑅++, s.t 𝑑(𝑥, 𝑦) ≤ 𝑀 , ∀𝑥, 𝑦 ∈ 𝑆. 
 

Def: let (𝑋, 𝑑) be a metric space and 𝑆 ⊆ 𝑋,  S is called open set, if ∀𝑥 ∈ 𝑆 , ∃𝑟 > 0 s.t 

𝐵(𝑥, 𝑟)  ⊂ 𝑆  

 

Ex: if 𝑆 =  ∅ , then S is open set 

If 𝑥 ∈ 𝑆 →  ∃𝑟 > 0  𝑠. 𝑡  𝐵(𝑥, 𝑟) ⊂ 𝑆 

       𝐹  →      𝐹     𝑜𝑟     𝑇   ∶    𝑇 
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If S = X , then S is open set 

Solution: 

Since all balls is contains in X 

 

Any open interval is open set. But the convers is not true  

Solution: 

 Let 𝑥 ∈ 𝑠 → 𝑥 ∈ (𝑎, 𝑏) ⊆ (𝑎, 𝑏) = 𝑆. 

So. S is open set 

 

Ex: Let 𝑆 = (−1,1) ∪ (2,3) 

Let 𝑥 ∈ 𝑠, then 𝑥 ∈ (−1,1) 𝑜𝑟 𝑥 ∈ (2,3) 

Then 𝑥 ∈ (−1,1) ⊂ 𝑆 𝑜𝑟 𝑥 ∈ (2,3) ⊂ 𝑆 



 

∴ S is open set. But is not open interval  

 

Any ball is open set. 

Proof: 

∀𝑦 ∈ 𝐵(𝑥, 𝑟), ∃𝑤 > 0, 𝑠. 𝑡 𝐵(𝑦, 𝑤) ⊂ 𝐵(𝑥, 𝑟) ? 

Let 𝑤 = 𝑟 − 𝑑(𝑥, 𝑦) > 0 

Let 𝑍 ∈ 𝐵(𝑦, 𝑤) ⟶ 𝑑(𝑧, 𝑦) < 𝑤 

𝑑(𝑍, 𝑦) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

≤ 𝑑(𝑥, 𝑦 + 𝑤 

= 𝑑(𝑥, 𝑦) + 𝑟 − 𝑑(𝑥, 𝑦) 

= 𝑟  

Then 𝑍 ∈ 𝐵(𝑥, 𝑟) ⟶ 𝐵(𝑦, 𝑤) ⊂ 𝐵(𝑥, 𝑟)  
This is true for all y in B(x,r)  

So B(x,r) is open set 

 

𝑺 = {𝒙}, 𝒙 ∈ 𝑹  is not open set 

Since there is not open interval in S Containing x and Contained in S 

i.e (( ∀ 𝑟 > 0, ∃𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) ⊂ 𝑆 )) 

 

[𝒂, 𝒃], [𝒂, 𝒃), [𝒂, ∞) 𝒂𝒏𝒅 (−∞, 𝒃] are not open set 

Proof: 

If  S=[a,b] ,then S is not open set ? 

Since, if 𝑥 = 𝑎 →  ∀𝑟 > 0 , 𝐵(𝑎, 𝑟) = (𝑎 − 𝑟, 𝑎 + 𝑟) ⊄ [𝑎, 𝑏] 
 

The intersection of any tow open set is open set 

i.e (( the intersection of any finite family of open set is open )) 

Proof: 

Let 𝐴 = { 𝑆𝑘 ∶  𝑆𝑘  𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑘 = 1,2, … , 𝑛} 

𝑇. 𝑝 ⋂ 𝑆𝑘
𝑛
𝑘=1   is open set  

Let 𝑥 ∈ ⋂ 𝑆𝑘
𝑛
𝑘=1 → 𝑥 ∈ 𝑆𝑘 , ∀𝑘 , but 𝑆𝑘 is open set ∀𝑘, then ∃𝑟𝑘 > 0 s.t 

𝐵(𝑥, 𝑟𝑘) ⊂ 𝑆𝑘 

Let 𝑟 = min {𝑟1 , 𝑟2 , … , 𝑟𝑛}  

Then 𝐵(𝑥, 𝑟)  ⊂ 𝑆𝑘 , ∀𝑘. 

∴ 𝐵(𝑥, 𝑟) ⊂ ⋂ 𝑆𝑘
𝑛
𝑘=1  , therefore ⋂ 𝑆𝑘

∞
𝑘=1  is open set. 

 

Theorem: the infinite intersection of open sets is not necessary open set. 



 

 

Ex: let 𝑆𝑛 = (𝑥 −
1

𝑛
, 𝑥 +

1

𝑛
) ∀𝑥 ∈ 𝑅, open interval. 

𝑛 = 1 → 𝑠1 = (𝑥 − 1, 𝑥 + 1)  

𝑛 = 2 → 𝑆2 = (𝑥 −
1

2
, 𝑥 +

1

2
)  

𝑛 = 3 → 𝑆3 = (𝑥 −
1

3
, 𝑥 +

1

3
)  

   .                             . 

   .                             . 

When 𝑛 →  ∞ ⋂ 𝑆𝑘 = {𝑥} ∞
𝑘=1  is not open 

Theorem: the union of any family (finite or infinite) – (countable or uncountable) of 

open set is open 

Proof:  

Let 𝐴 = {𝑆𝛼  , 𝑆𝛼  𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝛼 ∈∧} 

T.P: ⋃ 𝑆𝛼𝛼∈∧  is open set 

Let 𝑥 ∈ ⋃ 𝑆𝛼𝛼∈∧ →  ∃𝛼 ∈∧ 𝑠. 𝑡 𝑥 ∈ 𝑆𝛼  

Since 𝑆𝛼 is open set →  ∃𝛼 > 0 𝑠. 𝑡  

𝐵(𝑥, 𝑟𝛼) ⊂ 𝑆𝛼  , then 𝑥 ∈ 𝐵(𝑥, 𝑟𝛼) ⊂ 𝑆𝛼 ⊂ ⋃ 𝑆𝛼𝛼∈∧   

This is true ∀𝑥 ∈ ⋃ 𝑆𝛼𝛼∈∧ , therefore ⋃ 𝑆𝛼𝛼∈∧  is open set 

 

Theorem: S is open iff S is the Union of balls 
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Def: let X be anon-empty set and 𝜏 is a family of subsets of X, if 𝜏 satisfy the following  

1- 𝜙 , 𝑋 ∈  𝜏 

2- If 𝐺 , 𝐻 ∈ 𝜏 → 𝐺 ∩ 𝐻 ∈ 𝜏 

3- If {𝐺𝜆} ∈ 𝜏 →  ⋃ 𝐺𝜆𝜆∈∧ ∈ 𝜏 

Then, the order pair (𝑋, 𝜏) is called topological Space. 

 

Theorem: every metric space is topological space. 

 Proof:  

Let (𝑋, 𝑑) be a metric space and 𝜏 = the family of all open subsets of X, then 

1- 𝜙 , 𝑋 open sets →  𝜙, 𝑋 ∈ 𝜏 

2- 𝐺1 , 𝐺2 ∈ 𝜏 → 𝐺1, 𝐺2 are open sets 

                   → 𝐺1  ∩ 𝐺2 ∈ 𝜏 

3- If 𝐺𝜆 ∈ 𝜏 , 𝜆 ∈∧ → ∀𝜆 , 𝐺𝜆 open subset of X 



 

→ ⋃ 𝐺𝜆𝜆∈∧  open set of  

→  ⋃ 𝐺𝜆𝜆∈∧ ∈ 𝜏  

∴ (𝑋, 𝜏) is a topological space  

 

Def: let 𝑑1and 𝑑2 be two metric mapping in the set X, then 𝑑1, 𝑑2 are called Equivalent 

if every open set in (𝑋, 𝑑1) is open in (𝑋, 𝑑2) and Vice Versa  

 

Def: let (𝑋, 𝑑) be a metric space and 𝑆 ⊆ 𝑋, S is called closed set if 𝑆𝑐 is open Set 

where 𝑆𝑐 = 𝑋 − 𝑠 (Complement of S)  

 

Ex:  

1- 𝑆 = 𝑋 is closed set. 

Solution: 

Since 𝑆𝑐 = 𝑋𝑐 =  𝜙 open set 

2- 𝑆 = 𝜙 is closed set 

Solution: 

since 𝑆𝑐 = 𝜙𝑐 = 𝑋 is open set 

3- 𝑆 = [𝑎, 𝑏], [𝑎, 𝑏), 𝑆 = (−∞, 𝑏] are closed set in R 

Solution: 

if 𝑆 = [𝑎, 𝑏] → 𝑆𝑐 = (−∞, 𝑎) ∪ (𝑏, ∞) open set → 𝑆 is closed set 

4- In R , 𝑆 = {𝑥} is closed set 

Since : 

𝑆𝑐 = (−∞, 𝑥) ∪ (𝑥, ∞) → 𝑆𝑐 is open, So S is closed set. 

5- Any finite set in R is closed set  

Solution: 

let 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊆ 𝑅. 

𝑆𝑐 = (−∞, 𝑥1) ∪ (𝑥1 , 𝑥2) ∪ … ∪ (𝑥𝑛−1 , 𝑥𝑛)  ∪ (𝑥𝑛 , ∞)  

So, 𝑆𝑐 is open , then S is closed set 

6- If 𝑆 = 𝑁 , 𝑆 = 𝑍 , then S is Closed set 

Solution: 

let 𝑆 = 𝑁 

then 𝑆𝑐 = (−∞, 1) ∪ (1,2) ∪ (2,3) … (⋃ (𝑛, 𝑛 + 1)∞
𝑛=4 )  

→ 𝑆𝑐 is open →   𝑆 is closed 

if 𝑆 = 𝑍 → 𝑆𝑐 = (⋃ (−(𝑛 + 1), −𝑛)∞
𝑛=1 ) ∪ (−1,0)  ∪ (0,1) ∪ (⋃ (𝑛, 𝑛 + 1)∞

𝑛=1 ) 

𝑆𝑐 is open, then S is closed 
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7- The Union of finite number of closed sets is closed. 

Solution: 

let 𝐴 = {𝑆𝑖 , ;  𝑆𝑖  𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 𝑋 , 𝑖 = 1,2, … , 𝑛} 

T.P: ⋃ 𝑆𝑖
𝑛
𝑖=1  is closed set 

i.e. T.P (⋃ 𝑆𝑖
𝑛
𝑖=1 )𝑐 is open set 

Since 𝑆𝑖 is closed, ∀𝑖 then 𝑆𝑖
𝑐 is open ∀𝑖 

and ⋂ 𝑆𝑖
𝑐𝑛

𝑖=1  is open  

So, (⋃ 𝑆𝑖
𝑛
𝑖=1 )𝑐 is open                ((⋃ 𝑆𝑖

𝑛
𝑖=1 )𝑐 = ⋂ 𝑆𝑖

𝑐𝑛
𝑖=1 )  

therefore ⋃ 𝑆𝑖
𝑛
𝑖=1  is closed. 

 

Remark: the infinite union of closed sets is not necessary closed set 

 

Ex: let 𝑆𝑛 = { [
−𝑛

𝑛+1
 ,

𝑛

𝑛+1
 ] ∶ 𝑛 ∈ 𝑁 } , 𝑆𝑛 is closed interval, Is ⋃ 𝑆𝑛

∞
𝑛=1  is closed? 

Solution: 

If 𝑛 = 1 → 𝑆1 = [
−1

2
 , ,

1

2
] 

If 𝑛 = 2 → 𝑆2 = [
−2

3
 ,

2

3
] 

   .                . 

   .                . 

When 𝑛 →  ∞ ⟹  lim𝑛→ ∞
±𝑛

𝑛+1
=  lim𝑛→ ∞

±
𝑛

𝑛
𝑛

𝑛
+

1

𝑛

= ±1 

∴ ⋃ 𝑠𝑛
∞
𝑛=1 = (−1,1) open set 

 

  

Theorem: The infinite intersection of closed set S is closed? 

  

Def: let X be a metric space and 𝑆 ⊆ 𝑋, 𝑝 ∈ 𝑋, p is called an accumulation point of S if 

every open set contain p , contains another point q s.t 𝑝 ≠ 𝑞 , 𝑞 ∈ 𝑆. 

i.e.: p is a cc. point of S if ∀𝑈 , U is open set 𝑝 ∈ 𝑈, then  𝑈 − 𝑃 ∩ 𝑆 ≠ 𝜙 

 

Remark: Since every open set is Union balls. So, we can define acc. Point as following: 

P is acc. Point of S, if ∀𝑟 > 0 𝐵(𝑝, 𝑟) − {𝑝} ∩ 𝑆 ≠ 𝜙 

 𝑆′ is the closure of all acc. Point of S (Derived set) 



 

 𝑆 is the closure of S and 𝑆 = 𝑆 ∪ 𝑆′ 

 P is not acc. Point, if ∃𝑈 , 𝑈 is open and 𝑝 ∈ 𝑈  

S.t 𝑈 − {𝑝} ∩ 𝑆 = 𝜙. (i.e. ∃𝑟 > 0 , 𝐵(𝑟, 𝑝) − { 𝑝 } ∩ 𝑆 = 𝜙 

 

Ex: let 𝑠 = {1,5}, find 𝑆′ 𝑎𝑛𝑑 𝑆 

Solution: TO find 𝑆′ there are some cases 
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𝑥 = 1   , 𝑥 = 5   , 𝑥 < 1   , 𝑥 > 5    ,   1 < 𝑥 < 5   
If 𝑥 = 1 → x is not acc. Point since , ∃𝑟 > 0 

𝐵(𝑥, 𝑟) − {𝑥} ∩ 𝑆 = ∅, when 𝑟 = 1 

𝐵(1,1) − {1} ∩ {1,5} = (0,2) − {1} ∩ [1,5} = ∅  

If 𝑥 = 5 →  x is not acc. Point, since ∃𝑟 > 0 , 𝐵(𝑥, 𝑟) − {𝑥} ∩ 𝑆 = ∅, when 𝑟 = 1 

→ 𝐵(5,1) − {5} ∩ {1,5} = (4,6) − {5} ∩ {1,5} = ∅  

If 𝑥 < 1 →  x are not acc. Point since 𝑥 ∈ (𝑥 − 1,1) and (𝑥 − 1,1) ∩ 𝑆 = ∅ 

If 𝑥 > 5 → 𝑥 are not acc. Point, since 𝑥 ∈ (5, 𝑥 + 1)𝑎𝑛𝑑 (5, 𝑥 + 1) ∩ 𝑆 = ∅ 

If 1 < 𝑥 < 5 are not acc. Point since, 𝑥 ∈ (1,5)  𝑎𝑛𝑑  (1,5) ∩ 𝑆 = ∅ 

So, S has no a acc. Point then 𝑆′ = ∅ and 𝑆 = 𝑆 ∪ 𝑆′ = 𝑆 ∪ ∅ = 𝑆. 
 

Let 𝑠 = {1 ,
1

2
 ,

1

3
 , …  } = {

1

𝑛
 , 𝑛 = 1,2,3, … . }  show that 𝑆′ = {0} 

 

If 𝑆 = (𝑎, 𝑏) , find 𝑆′  
Solution: 

If 𝑥 = 𝑎 → 𝑥 is acc. Point since ∀𝑟 > 0 , 

𝑎 ∈ 𝐵(0, 𝑟) = (𝑎 − 𝑟, 𝑎 + 𝑟) and 𝐵(𝑎, 𝑟) − {𝑎} ∩ 𝑆 ≠ ∅ 

If 𝑥 = 𝑏 → 𝑥  is acc. Point, since ∀𝑟 > 0 , 𝑏 ∈ 𝐵(𝑏, 𝑟)  

𝐵(𝑏, 𝑟) = (𝑏 − 𝑟, 𝑏 + 𝑟) 𝑎𝑛𝑑 𝐵(𝑏, 𝑟) − {𝑏} ∩ (𝑎, 𝑏) ≠ ∅  

If 𝑎 < 𝑥 < 𝑏 → 𝑥 are acc. Point since ∀ 𝑟 > 0 , 

𝑥 ∈ 𝐵(𝑥, 𝑟) = (𝑥 − 𝑟, 𝑥 + 𝑟) 𝑎𝑛𝑑  𝐵(𝑥, 𝑟) − {𝑥} ∩ 𝑆 ≠ ∅  

That is (𝑥 − 𝑟, 𝑥 + 𝑟) − {𝑥} ∩ (𝑎, 𝑏) ≠ ∅ 

If 𝑥 < 𝑎 → 𝑥 are not acc. Point since 𝑥 ∈ (𝑥 − 1, 𝑎) 𝑎𝑛𝑑 (𝑥 − 1, 𝑎) ∩ 𝑆 = ∅ 

If 𝑥 > 𝑏 → 𝑥 are not acc. Point, since 𝑥 ∈ (𝑏, 𝑥 + 1) 𝑎𝑛𝑑 (𝑏, 𝑥 + 1) ∩ (𝑎, 𝑏) = ∅ 

∴ 𝑆′ = [𝑎, 𝑏] →  𝑆 = 𝑆 ∪ 𝑆′ = [𝑎, 𝑏]   
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Def: A sub set A of a metric space X is said to be dense if  𝐴 = 𝑋 

Ex: prove that �̅� = 𝑅 (i.e., Q dense set in R) 

Solution:  

If 𝑥 ∈ 𝑅, then 𝑥 is acc. Point in Q.  

Since any open interval Contain 𝑥 Contains infinitely rational and irrationals  

Then 𝑄′ = 𝑅 

So 𝑄 = 𝑄 ∪ 𝑄′ = 𝑄 ∪ 𝑅 = 𝑅 

Def: a metric space is called separable if it has a countable dense subset. 

Ex: R separable since Q countable and 𝑄 ⊆ 𝑅, with Q dense in R 

Theorem: let X be a metric space, 𝑆 ⊆ 𝑋 then  

1- S is closed iff 𝑆′ ⊂ 𝑋 

2- 𝑆 is closed set 

3-  𝑆 = 𝑆 iff S closed set 

4- 𝑆 is smallest closed set contains S. 

 

Compact Space 

Def: let (𝑋, 𝑑) be a metric space, ∅ ≠ 𝑆 ⊆ 𝑋, if the set {𝑈𝜆: 𝑈𝜆 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡, 𝜆 ∈∧ } is a 

family of open subsets of X such that 𝑆 ⊆ ⋃ 𝑈𝜆 𝜆∈∧ , then the family {𝑈𝜆} is called open 

cover for S in X. 

- If the family {𝑈𝜆} is finite and 𝑆 ⊆ ⋃ 𝑈𝜆 𝜆∈∧ then  {𝑈𝜆} is called finite cover. 

- Let  {𝑈𝜆} and  {𝑈𝛼} be to open cover for S and  𝑈𝜆 ∈  {𝑈𝛼} ∀𝜆, then  {𝑈𝜆} is 

called subcover for  {𝑈𝛼} 

Def: let A be a subset of a metric space (𝑋, 𝑑), A is called compact set if every open 

cover for A in X has a finite subcover. 
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Exp: Any finite subset B of matric space (X, d) is compact set 

Ex: R is not compact 

. 
 

Ex : Any open interval A=(a,b) is not compact  



 

 

Ex : Any closed interval A=[a,b] is Compact. 

Proof : 

Since we can restrict any open cover for A to finite subcover such as : 

Let 𝜖 > 0, 𝐵 = {(𝑎 − 𝜖, 𝑎 + 𝜖, (𝑎, 𝑏), (𝑏 − 𝜖, 𝑏 + 𝜖)} 

 

 

 

Theorem: (( Bolzano weir strass theorem )) 

In compact space X, every infinite subset S of X has at least one accumulation 

point. 

 

 

 

Theorem : In compact metric space, every closed subset is compact. 

Proof : X be a compact metric space, and A be a closed subset of X, then 

𝐴𝑐 is open. T.P A is compact. 

Let 𝐵 = {𝑈𝜆 ∶  𝑈𝜆 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑋, ∀ 𝜆 ∈ ^ } be open cover for A. 

Then 𝐴 ⊆  ⋃ 𝑈𝜆𝜆∈^   

Sine 𝑋 = 𝐴 ∪ 𝐴𝑐  ⊆ (⋃ 𝑈𝜆𝜆∈^  ) ∪  𝐴𝑐 ,  

But 𝐴𝑐 is open set then ⋃ 𝑈𝜆 ∪  𝐴𝑐
𝜆∈^  is open cover for X, since X is compact 

set , then there exists a finite member 𝜆1, 𝜆2, … … , 𝜆𝑛 such that 

𝑋 = 𝐴𝑐  ∪ (⋃ 𝑈𝜆𝑖

𝑛

𝑖=1

) 

Since that 𝑋 = 𝐴𝑐 ∪ (⋃ 𝑈𝜆𝑖
𝑛
𝑖=1 )  .Since 𝐴 ∩ 𝐴𝑐 = ∅ , then 𝐴 ⊆  ⋃ 𝑈𝜆𝑖

𝑛
𝑖=1   

⇒ B has a finite subcover { 𝑈𝜆1, 𝑈𝜆2, … … , 𝑈𝜆𝑛}. For A, ⇒ A is compact. 
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Theorem: Let (𝑋, 𝑑) be a metric space, 𝐴 ⊆ 𝑋, If A is compact, Then A is closed 

 

Theorem: Let (𝑋, 𝑑) be a metric space, 𝐴 ⊆ 𝑋, If A is compact, Then A is bounded 

 

Remark: In metric space  

                                           Compact → Closed + bounded  

(   a  ) (   b   ] 



 

 

Theorem: Let {𝐼𝑛 ∶ 𝑛 = 1,2,3, … } be a family of closed interval  

if 𝐼𝑛+1 ⊂ 𝐼𝑛, ∀𝑛, 𝑡ℎ𝑒𝑛 ⋂ 𝐼𝑛
∞
𝑛=1 = ∅ 

 

Theorem: (Hien-Bord Theorem) 

Every closed and bounded subset of 𝑅𝑛, 𝑛 ≥ 1, is compact. 

 

 
Chapter Three 

Sequences in Metric Space 

Definition: Let S be any set a function f whose domain is the set N and the range is S is 

Called a sequence in S. 

i.e. 𝑓: 𝑁 → 𝑆, where ∀ 𝑛 ∈ 𝑁, ∃ 𝑥𝑛 ∈ 𝑆 𝑠. 𝑡 𝑓(𝑛) = 𝑥𝑛 

 

1. <
1

5𝑛
> =

1

5
 ,

1

10
 ,

1

15
 , … 

2. <
1

𝑛+1
> =

1

2
 ,

1

3
 ,

1

4
 , … 

3. < 4 > = 4 , 4 , 4 , … 

4. < 𝑛 − 3 > =  −2 , −1 , 0 , 1 , … 

 

Def: Let (𝑋, 𝑑) be a metric space and < 𝑋𝑛 > be seq. in X, then < 𝑋𝑛 > is said to be 

converges to appoint in X, if ∀ 𝜖 > 0 , ∃𝑘 ∈ 𝑁 𝑠. 𝑡 𝑑? (𝑋𝑛, 𝑥) <  𝜖, ∀𝑛 > 𝑘. We write 

𝑋𝑛 → 𝑥  or lim𝑛→ ∞ 𝑋𝑛 = 𝑥 , 𝑥 is called  
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A Limit point of < 𝑋𝑛 >. 

If ∀𝑛 > 𝐾, does not Converge, them < 𝑋𝑛 > is called divergent Sequence. 

Not that: K depend on 𝜖 only. 

 التغير الهندسي للتعريف التقارب 

(𝑋𝑛 → 𝑥) 

 لانه  𝑋𝑛تمتلك عدد غير منتهي من حدود او نقاط المتتابعة   𝜖ونصف قطرها    xيعني الكرة التي مركزها 

∀𝜖 > 0 , ∃ 𝑘 ∈ 𝑁 𝑠. 𝑡 𝑑(𝑋𝑛, 𝑥) < 𝜖, ∀𝑛 > 𝑘 ⟹ 𝑋𝑛 ∈ 𝐵(𝑥, 𝜖).   

Ex: Let < 𝑋𝑛 > = < 1 > constant seq. show that lim𝑛→∞ 𝑋𝑛 = 1 

< 1 > convergs to 1 since ∀ 𝜖 > 0 , ∃ 𝑘 ∈ 𝑁  

𝑠. 𝑡 𝑑(𝑋𝑛, 𝑥) = |1 − 1| = 0 < 𝜖, ∀𝑛 > 𝑘  



 

Ex: Let < 𝑋𝑛 > be a seq. defined by 𝑋𝑛 = {
𝑛 𝑖𝑓 𝑛 ≤ 50

 
3 𝑖𝑓 𝑛 ≥ 50

 .show that lim𝑛→ ∞ 𝑋𝑛 = 3 

Solution:  

< 𝑋𝑛 ≥ 1,2,3, … , 50 , 3 , 3 , 3 , …   

∀𝜖 > 0 , ∃𝑘 = 50 𝑠. 𝑡 𝑑(𝑋, 𝑥) = |3 − 3| = 0 < 𝜖  

 

Ex: Show that lim𝑛→ 𝑋𝑛 = 2 , where < 𝑋𝑛 > = <
2𝑛−3

𝑛+1
>  

Solution: 

∀ 𝜖 > 0 , to find 𝐾 ∈ 𝑁 s.t 𝑑(𝑋𝑛, 𝑥) <  𝜖, ∀𝑛 > 𝑘 ? 

𝑑(𝑋𝑛, 𝑥) = |
2𝑛 − 3

𝑛 + 1
− 2| = |

2𝑛 − 3 − 2(𝑛 + 1)

𝑛 + 1
| = |

2𝑛 − 3 − 2𝑛 − 2

𝑛 + 1
|

= |
−5

𝑛 + 1
| =

5

𝑛 + 1
 

∀𝜖 > 0, by Arch. Property → ∃𝐾 ∈ 𝑁 ∋ 

∀𝑘 > 5 →
5

𝜖
< 𝑘.  

∀𝑛 > 𝐾 → 𝑛 + 1 > 𝑘 + 1 𝑎𝑛𝑑 𝑘 + 1 > 𝑘 , 𝑘 >
5

𝜖
  

⟹ 𝑛 + 1 > 𝑘 + 1 > 𝑘 >
5

𝜖 
  

1

𝑛+1
<

𝜖

5
 , ∀𝑛 > 𝑘   

 

Exc:  

1. Let < 𝑋𝑛 > =<
2

√𝑛
> , show that lim𝑛→ ∞ 𝑋𝑛 = 0 

2. Let < 𝑋𝑛 > = <
5𝑛−4

2−3𝑛
>, show that lim𝑛→ ∞ 𝑋𝑛 = −

5

3
 

3. Let < 𝑋𝑛 > = <
2−7𝑛

1−5𝑛
>, show that lim𝑛→ ∞ 𝑋𝑛 =

7

5
 

Show that the following sequence are divergent 

1. < 𝑋𝑛 > = < √𝑛 > 

2. < 𝑋𝑛 > = < (−1)𝑛 > 

3. < 𝑋𝑛 > 3𝑛 > 

4. < 𝑋𝑛 > = <
𝑛2

2𝑛−1
> 

 

Theorem: If < 𝑋𝑛 > is convergent sequence in (𝑋, 𝑑), then < 𝑋𝑛 > has a unique limit 

point. 



 

Proof: 

Suppose < 𝑋𝑛 > has two limit points x and y with 𝑥 ≠ 𝑦 and 𝑑(𝑥, 𝑦) = 𝜖 

Since 𝑋𝑛 → 𝑦 ⟹ ∀𝜖 > 0, ∃𝑘2 ∈ 𝑁 𝑠, 𝑡 𝑑(𝑥, 𝑦) <
𝜖

2
 

Let 𝑘 = max{𝑘1, 𝑘2} 

Since 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦) <
𝜖

2
+

𝜖

2
= 𝜖 

⇒ 𝑑(𝑥, 𝑦) <  𝜖 , ∀ 𝜖 > 0  

This true only when 𝑑(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦 → 𝐶! 

∴ < 𝑋𝑛 > has a unique limit point. 
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Definition: A seq. < 𝑋𝑛 > is called bounded the set {𝑋𝑛: 𝑛 ∈ 𝑁} is bounded  

i.e. < 𝑥𝑛 > is bounded if ∃𝑚 > 0 𝑠. 𝑡 𝑑(𝑥𝑛, 𝑥𝑚) ≤ 𝑀 , ∀𝑛 , ∀𝑚. 
Ex:  

1. <
(−1)𝑛+1

𝑛
> = 1 , −

1

2
 ,

1

3
 , −

1

4
 , …  

|𝑥𝑛| = |
(−1)𝑛+1

𝑛
| =

1

𝑛
≤ 1 ⟹ < 𝑥𝑛 >  is bounded  

and 𝑀 = 1  

 

2. < 5 +
(−1)𝑛+1

𝑛
> = 6 ,

9

2
,

16

3
 , …  

< 𝑥𝑛 ≥ 5 +
1

𝑛
≤ 5 + 1 = 6 ⟹ < 𝑥𝑛 > is bounded 

and 𝑀 = 6  

 

3. < 𝑛 + (−1)𝑛 > = {
< 𝑛 − 1 >  , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 
< 𝑛 + 1 >  , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

   

 

4. |𝑥𝑛| = {
|𝑛 − 1| ≥ 0

 
|𝑛 + 1| ≥ 2

  

 

Theorem: In metric space. Every convergent sequence is bounded. 

Proof:  

Let < 𝑥𝑛 > be a convergent sequence in (𝑋, 𝑑) and 𝑥𝑛 → 𝑥, to prove < 𝑥𝑛 > is 

bounded 



 

Since 𝑥𝑛 → 𝑥 ⟹ ∀𝜖 > 0 , ∃𝑘 ∈ 𝑁 𝑠. 𝑡 𝑑(𝑥𝑛, 𝑥) < 𝜖, ∀𝑛 > 𝑘 

That 𝜖 = 1 ⟹ 𝑑(𝑥𝑛, 𝑥) < 1, ∀𝑛 ∈ 𝑘. 

Let 𝑟 = max{1 , 𝑑(𝑥1, 𝑥) , 𝑑(𝑥2, 𝑥) , … , 𝑑(𝑥𝑛, 𝑥) }   

⟹ 𝑑(𝑥𝑛, 𝑥) < 𝑟  

∴ < 𝑥𝑛 >  is bounded and 𝑀 = 2𝑟  
 

Remark: The convers of above theorem is not true. 

 

Ex: < (−1)𝑛 > =  −1 , 1 , −1 , 1 , …  
|𝑥𝑛| = |(−1)𝑛| = 1 ⟹ < 𝑥𝑛 > is bounded and 𝑀 = 1   

< (−1)𝑛 > is divergent? 

 

Remake: If < 𝑥𝑛 > unbounded, then < 𝑥𝑛 > is divergent. 

Proof:  

Suppose that < 𝑥𝑛 > converged and unbounded sequence. 

Since < 𝑥𝑛 > Convergent → < 𝑥𝑛 > bounded by theorem (In metric space, every 

conv. Seq. is bounded) → C! ,So < 𝑥𝑛 > unbounded is < 𝑥𝑛 > is divergent  

 

Ex:  

 < 𝑥𝑛 > =< √𝑛 − 1 > = 0 , √1 , √2 , √3 , …  unbounded ⟹ < 𝑥𝑛 > divergent  

 

 < 𝑥𝑛 > = < 𝑛2 − 𝑛 > = 0 , 2 , 6 , 11 , …  unbounded ⟹ < 𝑥𝑛 > divergent  
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Definition: Let < 𝑥𝑛 > be a real sequence. Then it is called  

 Non – decreasing. If  𝑥𝑛+1 ≥ 𝑥𝑛 , ∀𝑛 

 Non – increasing. If 𝑥𝑛+1 ≤ 𝑥𝑛 , ∀𝑛 . 

 Not monotone. If it does not increasing and decreasing. 

 

Ex:  

 < 𝑥𝑛 > = <
1

√𝑛
> 

𝑥𝑛 =
1

√𝑛
  , 𝑥𝑛+1 =

1

√𝑛+1
   

∀𝑛 , 𝑛 + 1 > 𝑛 ⟹  √𝑛 + 1 >  √𝑛 →
1

√𝑛+1
≤

1

√2
→ 𝑥𝑛+1 ≤ 𝑥𝑛  



 

∴ < 𝑥𝑛 > is non – increasing  

 

 < 𝑥𝑛 > = <
𝑛

𝑛+1
>  

𝑥𝑛 =
𝑛

𝑛+1
  , 𝑥𝑛+1 =

𝑛+1

𝑛+2
   

𝑥𝑛+1 − 𝑥𝑛 =
𝑛+1

𝑛+2
−

𝑛

𝑛+1
=

(𝑛+1)−𝑛(𝑛+2)

(𝑛+1)(𝑛+2)
=

𝑛2+2𝑛+1−𝑛2−2𝑛

(𝑛+1)(𝑛+2)
=

1

(𝑛+1)(𝑛+2)
> 0    

∴ 𝑥𝑛+1 − 𝑥𝑛 > 0 → 𝑥𝑛+1 > 𝑥𝑛 , ∀𝑛 , ∴< 𝑥𝑛 > non – decreasing 

 < 𝑥𝑛 > = < (−1)𝑛 > not monotone  

 < 𝑥𝑛 > = <
(−1)𝑛

sin(𝑛)
> not monotone. 

 < 𝑥𝑛 > = < (−5)𝑛 > not monotone. 

 

Theorem: Every monotone bounded real seq. is convergent  

 

Ex: < 𝑥𝑛 > =  〈
(−1)𝑛

𝑛
〉  > 0 

< 𝑥𝑛 >  Convergent seq. but not monotone. 

 

Ex: Show that 𝑥𝑛 =
1

𝑛+1
+

1

𝑛+2
+ ⋯ +

1

𝑛+𝑛
 is convergent. 

 

Theorem: Let (𝑋, 𝑑) be a metric space and 𝑆 ⊆ 𝑋 : 

i. If < 𝑥𝑛 > seq. in S and 𝑥𝑛 → 𝑥 then 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑆′ 

ii. If 𝑥 ∈ 𝑆 𝑜𝑟 𝑥 ∈ 𝑆′, then there exists a sequence < 𝑥𝑛 > in S s.t 𝑥𝑛 → 𝑥 

 

Definition: The sequence < 𝑥𝑛 > is a sub sequence of < 𝑥𝑛 >, if < 𝑚 > is increasing 

sequence in N. 

 

Ex: find a sub Seq. of the following seq. 

1. < 𝑥𝑛 > = < √𝑛 > 

Solution: 

< √𝑛 > =  √1, √2, √3, …  
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Let < 𝑚 > = < 2𝑛 > increasing Seq. in N, the Sequence is  

< 𝑋𝑚 > = < √2𝑛 > = √2, √4, √6, … 



 

Let < 𝑚 > = < 𝑛 + 3 > increasing seq in N, the sub seq is  

< 𝑚 > = < √𝑛 + 3 > =  √4, √5, √6, … 

 

Theorem: Let < 𝑥𝑛 > be a convergent Seq and lim𝑛→ ∞ 𝑋𝑛 = 𝑥 then the sub seq 

< 𝑋𝑛𝑚 > also conv. To 𝑥, where 𝑛 → ∞ 

Proof: 

Since 𝑥𝑛 → 𝑥, ∀𝜖 > 0 , ∃𝑘 ∈ 𝑁 𝑠. 𝑡 𝑑(𝑥𝑛, 𝑥) < 𝜖, ∀𝑛 > 𝑘  

Choose 𝑛𝑟 > 𝑘 , then ∀𝑚 > 𝑟 → 𝑛𝑚 > 𝑛𝑟 > 𝑘 

⟹ 𝑑(𝑥𝑛𝑚, 𝑥) < 𝜖, ∀𝑛𝑚 > 𝑘  

⟹< 𝑥𝑛𝑚 > → 𝑥. 

 

Definition: Let (𝑋, 𝑑) be a metrices space and < 𝑥𝑛 > be a seq. in 𝑋 we say that  

< 𝑥𝑛 > is a principle. (Caushy) seq. if ∀𝜖 > 0, ∃𝑘 ∈ 𝑁 𝑠. 𝑡 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖, ∀𝑛, 𝑚 > 𝑘. 

 

Ex: prove that <
1

𝑛
> is Caushy seq in R? 

Solution: ∀ 𝜖 > 0, to find 𝑘 ∈ 𝑁 s.t 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖, ∀𝑛, 𝑚 > 𝑘, ∀𝑛, 𝑚 > 𝑘. 

Let 𝑚 > 𝑛 → 𝑑(𝑥𝑛, 𝑥𝑚) = |
1

𝑛
−

1

𝑚
| ≤ |

1

𝑛
| + |

1

𝑚
| <

1

𝑛
+

1

𝑛
=

2

𝑛
 

Since 𝜖 > 0 (by Arch. Prop) →  ∃𝑘 ∈ 𝑁 s.t  

𝑘𝜖 > 2 →
2

𝑘
< 𝜖  

∀ 𝑛 > 𝑘 , 𝑑(𝑥𝑛, 𝑥𝑚) = |𝑥𝑛 − 𝑥𝑚| <
2

𝑛
< 𝜖, ∀𝑛, 𝑚 > 𝑘 → < 𝑋𝑛 > is Caushy seq. 

 

Theorem: I metric space (𝑋, 𝑑), every Convergent seq. is Caushy. 

 

Remark: The Converse of the above theorem. Is not true by the following example. 

Ex: Let 𝑋 = 𝐼𝑅++ positive numbers 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ 𝑅++, ∀𝑛 > 𝑘. 

< 𝑥𝑛 > = <
1

𝑛
> is Caushy seq. 

But 
1

𝑛
→ 0 ∉ 𝑅++ 

∴ <
1

𝑛
> is not Conv 

 

Theorem: In metric Space (𝑥, 𝑑) every Caushy seq. is bounded. 

 

Ex: Let < 𝑥𝑛 > = (−1)𝑛 be a seq. 

< 𝑥𝑛 > is bounded seq, but not Caushy Seq 



 

Since 𝑑(−1,1) = 1 < 𝜖, ∀ 𝜖 > 0 

If 𝜖 =
1

2
→ 2 <

1

2
→ 𝐶! 

 

Theorem: For any real number 𝑟, ∃ rational Caushy Seq < 𝑥𝑛 > Conv to 𝑟. 
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Definition: Let(𝑋, 𝑑) be a metric space we say that X is Compete. If every Cauchy Seq. 

                   In X coverage to a point in X. 

             i.e.: X is complete. If ∀< 𝑋𝑛 > Cauchy Seq. →  ∃�̅� ∈ 𝑋 𝑠. 𝑡 𝑋𝑛 → 𝑋. 
 

Theorem: Cantor’s theorem for Nested sets. 

 Proof: 

Let (𝑋, 𝑑) be a Complete matric Space and  < 𝐸𝑛 > be a seq of closed bounded 

Subset of X such that 𝐸1 ⊃ 𝐸2 ⊃ ⋯ 𝐸𝑛 ⊃ 𝐸𝑛+1 ∀𝑛 and the Sequence of Positive 

numbers <  𝑑𝑎𝑖𝑚 𝐸𝑛 > → 0, then ∩ 𝐸𝑛 = Singleton point  

 

Remark: The condition of closed sets of Cantor’s theorem is necessary. 

 

Ex: Let 𝐸𝑛 = (0 ,
1

𝑛
) be the open intervals, 𝐸𝑛+1 ⊂ 𝐸𝑛 , and 𝑑𝑎𝑖𝑚(𝐸𝑛) =

1

𝑛
→ 0, ∀𝑛                

       𝐸𝑛 is bounded and not closed. Prove that ∩ 𝐸𝑛 = ∅ 

Proof: 

Suppose ∩ 𝐸𝑛 ≠ ∅ →  ∃𝑟 ∈ 𝐸𝑛 𝑠. 𝑡 

𝑟 ∈ (0 ,
1

𝑛
) , ∀𝑛  

Since 𝑟 > 0 , by Arch.pvop ,∃𝑘 ∈ 𝑁 𝑠. 𝑡   

𝑘𝑟 > 1 →
1

𝑘
< 𝑟 → 𝐶!  

 ∩ 𝐸𝑛 = ∅ 

 

Corollary: Let < ±𝑛 > be aseq of closed intervals, 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] such that 

1. 𝐼𝑛 ⊃ 𝐼𝑛+1 

2. lim𝑛→∞ |𝐼𝑛| = 0,  then ∩ 𝐼𝑛 =singleton Point 

 

Theorem: 𝑅𝑛 is Complete metric Space, 𝑛 ≥ 1  

i.e.: (Every Cauchy sequence in 𝑅𝑛 is Convergent) 



 

Theorem: Let < 𝑋𝑛 > , < 𝑌𝑛 > and < 𝑍𝑛 > real Sequence s.t ∀𝑛 , 𝑋𝑛 ≤ 𝑌𝑛 ≤ 𝑍𝑛 and  

                lim𝑛→∞ 𝑋𝑛 = lim𝑛→ ∞ 𝑍𝑛 = 𝑎 then lim𝑛→∞ 𝑌𝑛 = 𝑎 

 

Theorem: let < 𝑋𝑛 > be a real sequence such that < 𝑋𝑛 > Converge to 0 and  

                   𝑋𝑛 ≥ 0 , 𝑝 > 0 then < 𝑋𝑛
𝑝

> converges to 0 

Proof: 

< 𝑋𝑛
𝑝

> = 𝑥1
𝑝

 , 𝑥2
𝑃 , 𝑥3

𝑝
 , …  

Since < 𝑋𝑛 > → 0 → ∀𝜖 > 0 , ∃ 𝑘 ∈ 𝑁 𝑠. 𝑡 

|𝑋𝑛−0| = |𝑋𝑛| <  𝜖𝑝 , ∀𝑛 > 𝑘   and 

|𝑋𝑛 . 𝑋𝑛 … . 𝑋𝑛| = |𝑋𝑛||𝑋𝑛| … . . |𝑋𝑛| = |𝑋𝑛|𝑝 < (𝜖
1

𝑝)
𝑝

 , ∀𝑛 > 𝑘  

< 𝑋𝑛
𝑝

> → 0 .  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter four 



 

Infinite Series  
Def: Let ⟨𝑥𝑛⟩ be a real seq the series of the form, if 𝑥1 + 𝑥2 then itis Called infinite series, and it 
is written as ∑𝑛=1

∞  𝑥𝑛. 

If the series of the form 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛, then itis Called finite Series.and written as ∑𝑘=1
𝑛  𝑥𝑘  

Def: Let ∑𝑛=1
∞   an be a finite series, the seq ⟨𝑆𝑛⟩ is called the sequence of Partial sums of 

∑𝑛=1
∞  an    

where 𝑆1 = 𝑎1 

𝑆2 = 𝑎1 + 𝑎2

𝑆3 = 𝑎1 − 𝑎2 + 𝑎3

 ⋮
𝑆𝑛 = 𝑎1+𝑎2 + ⋯ + 𝑎𝑛

 

Def: 

let ∑𝑛=1
∞  𝑎𝑛 be infinite series, then it is said toble 

1. Converge, if ⟨𝑆𝑛⟩ converge 

2. diverge, if ⟨𝑠𝑛⟩ diverge. 
3.  If ⟨ Sn ⟩ Converge to b. then ∑𝑛=1

∞  𝑎𝑛 = 𝑆𝑛. 

Example: 

let 𝑎𝑛 = 1, ∀𝑛, then 

∑ 𝑎𝑛
∞
𝑛=1 = 1 + 1 + 1 + ⋯  

𝑆1 = 𝑎1 = 1  

𝑆2 = 𝑎1 + 𝑎2 = 1 + 1 = 2  

𝑆3 = 𝑎1 + 𝑎2 + 𝑎3 = 1 + 1 + 1 = 3  

.

.

.
  

𝑆𝑛 = 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 = 1 + 1 + 1 + ⋯ + 1 = 𝑛  

The seq of partial sum is ⟨𝑆𝑛⟩ = ⟨𝑛⟩ is divergent Since it is unbounded 

⇒ ∑𝑛=1
5   an is diverge. 

 

 



 

 

Example: let ∑𝑛=1
∞  𝑎𝑛 = 3 − 3 + 3 − 3 + ⋯ 

𝑆1 = 𝑎1 = 3

𝑆2 = 𝑎1 + 𝑎2 = 3 − 3 = 0

𝑆3 = a1 + a2 + 𝑎3 = 3 − 3 + 3 = 3

  

         ⋮  

        𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 = {
3    , 𝑖𝑓 𝑛 𝑜𝑑𝑑
0  , 𝑖𝑓 𝑛 𝑒𝑣𝑒𝑛

 

The Sequence of  partial Sum 〈𝑆𝑛〉 is divergent  

∴  ∑ 𝑎𝑛
∞
𝑛=1  is divergent  

 

Example: 

Let: ∑𝑛
∞  𝑎𝑛 = 2 + 4 + 2 + 4 + 24 

𝑛 = 1 

𝑆1 = 𝑎1 = 2 

𝑆2 = 𝑎1 + 𝑎2 = 2 + 4 = 6 

𝑆3 = 𝑎1 + 𝑎2 + 𝑎3 = 2 + 4 + 2 = 8 

𝑆𝑛 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 = 2 + 4 + 2 + 4 + ⋯ =? 

The sequence of partial sums ⟨𝑆𝑛⟩ is unbownded, then ⟨𝑠𝑛⟩ is diverg ent so ∑𝑛=1
∞  𝑎𝑛 is diverge 

 

Exercises  

let ∑𝑛=1
∞  𝑎𝑛 = ∑𝑛=1

∞  
1

𝑛(𝑛+1)
, then ∑𝑛=1

∞  𝑎𝑛    is convergent. 

 

 

 

 

 

 

 

 

 



 

Harmonic Series 

∑  

∞

𝑛=1

𝑎𝑛 = ∑  

∞

𝑛=1

1

𝑛
= 1 +

1

2
+

1

3
+

1

4
+ ⋯  divergent  

proof: 

𝑆1 = 𝑎1 = 1 

𝑠2 = 𝑎1 + 𝑎2 = 1 +
1

2
 

𝑆3 = 𝑎 + 𝑎2 + 𝑎3 = 1 +
1

2
+

1

3
 

𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛−1 +
1

2
+ ⋯ +

1

𝑛
 

𝑆𝑛+1 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 − 𝑎𝑛−1 = 1 +
1

2
+ ⋯ +

1

𝑛
+

1

𝑛 + 1
 

𝑆𝑛+𝑛 =
1

2𝑛
+

1

2
+

1

3
+ ⋯

1

𝑛
+

1

𝑛 + 1
+

1

𝑛 + 2
+ ⋯ +

1

2𝑛
 

let 𝑚 = 2𝑛 

(𝑆𝑚 − 𝑆𝑛) = | (1 +
1

2
+ ⋯ +

1

𝑛
+ ⋯ +

1

2𝑛
) − (1 +

1

2
+ ⋯ +

1

𝑛
) |

 =
1

𝑛 + 1
+

1

𝑛 + 2
+ ⋯ +

1

2𝑛

 >
1

2𝑛
+

1

2𝑛
+ ⋯ +

1

2𝑛

 = 𝑛 ⋅
1

2𝑛
=

1

2

 

If 𝜖 =
1

2
 , then |𝑆𝑚 − 𝑆𝑛| > 𝜖 

∴ ⟨𝑆𝑛⟩ is not Caushy sequence ⇒ ⟨𝑆𝑛⟩ is not Convergent. 

So ∑𝑛=1
2  𝑎𝑛 is diverge. 

 

Geometric Series  

∑𝑛=1
∞  𝑎𝑟𝑛−1 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ 

where a > 0, 𝑟 is called the base of Series. the sequence of partial, Sum is  

𝑠𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛−1 

(1) if |𝑟| = 1 

∴ 𝑆𝑛 = 𝑎 + 𝑎−1 + 𝑎 + ⋯ + 𝑎 = 𝑛 ⋅ 𝑎 
⟨𝑆𝑛⟩ = ⟨𝑛𝑎⟩ diverg ⇒ ∑𝑛=1

∞  𝑎𝑟𝑛−1 diverge. 



 

(2) if |𝑟| > 1 
𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ + 𝑎𝑟𝑛−1  
𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ + 𝑎𝑟𝑛  
→ 𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟𝑛  
   𝑆𝑛(1 − 𝑟) = 𝑎(1 − 𝑟𝑛)  

∴ 𝑆𝑛 =
𝑎(1−𝑟𝑛)

(1−𝑟)
  

When 𝑛 →  ∞ ⇒  lim𝑛→ ∞ 𝑆𝑛 = lim  
𝑎(1−𝑟𝑛)

(1−𝑟)
 

                                                  =
𝑎(1−0)

1−𝑟
=

𝑎

1−𝑟
  

∴  ∑ 𝑎𝑟𝑛−1 
 =

𝑎

1−𝑟
   .Converge  

 
(3) if |𝑟| > 1 

𝑠𝑛 =
𝑎(1 − 𝑟𝑛)

1 − 𝑟
 

when 𝑛 ⟶ ∞; 𝑟𝑛 = ∓∞ ⇒ 𝑆𝑛 → ∞ 

∴ Sn diverge. 

∴ ∑𝑛=1
∞  𝑎𝑟𝑛−1 diverge. 

∑𝑛=1
∞  𝑎𝑟𝑛−1 = {

 divenge  if |r| > 1 
 

Ganverge    if |r| < 1   
 

                               = ∑𝑛=1
∞  𝑎𝑟𝑛−1 −

𝑎

1−𝑟
 

 

Example 

Tet ∑𝑛=1
∞  𝑎𝑛 = 1 +

5

2
+ (

5

2
)

2
+ (

5

2
)

3
+ ⋯

 Geometric 

 series. 
 

𝑎 = 1, 𝑣 =
5

2
⇒ |𝑟| = |

5

2
| =

5

2
> 1 

∴ ∑𝑛=1
∞   an divenge: 

∑∑=1
∞  𝑎𝑛=1 = 1 −

3

4
+

9

16
 

27

64
+ ⋯ Geometric Series. 

∑  

∞

𝑛=1

𝑎𝑟𝑛−1 = 1 + (
−3

4
) + (

−3

4
)

2

+ (
−3

4
)

3

+ ⋯ 

|𝑟| < 1 

−1 < 𝑟 < 1 

𝑟 = 0 

0 = 0 

 
0 

1 1-  



 

𝑎 = 1, 𝑣 =
3

4
⇒

 |𝑟| = |−
3

4
| =

3

4
< 1

 ∴ ∑  

∞

𝑛=1

 𝑎𝑛 is Converger and 

 ∑  

∞

𝑛=1

 𝑎𝑟𝑛−1 =
𝑎

1 − 𝑟
=

15

1 +
3
4

=
1

7
4

=
4

7

 

Theorem: 

If ∑𝑛=1
∞   an Convergent, them lim𝑛→∞  𝑎𝑛 = 0 

(that is, ∀∈> 0, ∃𝑘 ∈ 𝑁, 𝑠. 𝑡|𝑎𝑛 − 0|⟨𝜖, 𝑦𝑛⟩𝑘  

proof 

Suppose 𝑆𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 
∑𝑛=1

∞   an canvergent, then ⟨𝑆𝑛⟩ Convergent 

⇒ ⟨𝑆𝑛⟩ canshy sequence. 
∴ ∀∈> 0, ∃𝑘 ∈ 𝑁, sit |𝑆𝑚 − 𝑠𝑛| < 𝐸, ∀𝑛, 𝑚 > 𝑘 
let 𝑚 = 𝑛 + 1 
So |𝑆𝑚 − 𝑆𝑛| <  𝜖 → |𝑆𝑛+1 − 𝑆𝑛| = |𝑎𝑛+1| < 𝜖 , ∀ > 𝑘 
→ |𝑎𝑛| < 𝜖 , ∀𝑛 > 𝑘 , 𝑆𝑜 |𝑎𝑛 − 0| <  𝜖 , ∀𝑛 > 𝑘. 
then lim𝑛→∞  𝑎𝑛 = 0 
 

Example: 

⟨𝑎𝑛⟩ = ⟨
1

𝑛
⟩ →  0  

and lim𝑛→∞  𝑎𝑛 = 0 bul ∑𝑛=1
∞  an =   ∑𝑛=1

∞  
1

𝑛
 diveroe  

 ليس صحيح أعلاههذ المثال يبين ان عكس المبرهنة 

Corollary: 

If lim𝑛→ ∞ 𝑎𝑛 ≠ 0 diverge.  

proof: 

Suppose that ∑𝑛=1
∞  an  Convergent. 

then, lim𝑛→ ∞ 𝑎𝑛 = 0, by theorem, ⟶ C! 

 



 

 

Example 

∑  ∞
𝑛 𝑎𝑛 = ∑  (√𝑚 − √𝑛 − 1)  

∑𝑛=1
∞  an Diverge, but lim𝑛→ ∞ 𝑎𝑛 = 0 

 

Exercises 

(1) ∑𝑛3
∞  

1

√𝑛
 

(2) ∑𝑛=1
𝑎  √

𝑛

3𝑛+5
 

(3) ∑
𝑛3+2

2𝑛(𝑛+5)
∞
𝑛=1  

Theorem 

If ∑𝑛=1
∞   and ∑𝑛=1

∞   bn are Convergant Series and 𝑘 ∈ 𝑅, then 

(1) ∑𝑛=1
∞  (an + 𝑏𝑛) convergent and ∑𝑛=1

∞  (an + 𝑏𝑛) = ∑𝑛=1
∞  an + ∑𝑛=1

∞  bn 

(2) ∑𝑛=1
𝑚𝑛  𝑘𝑎𝑛 convergent and ∑𝑛=1

∞  𝑘𝑎𝑛 = 𝑘∑𝑛𝑠
∞  𝑎𝑛 

 proof: (1) 

let 〈𝑠𝑛〉 be a sequence of partial sums of 

∑𝑛=1
∞  𝑎𝑛 and 

⟨𝑡𝑛⟩ bea seq of partipl sam of ∑𝑛=1
∞  𝑏𝑛 

∑𝑛=1
∞   an convergent, so ∃𝑠 ∈ 𝑅 s.t ∑𝑛=1   = s  

and ⟨𝑆𝑛⟩ ⟶ S ⇒ Lim𝑛→∞ 𝑆𝑛 = S. 

also, ∑𝑛=1
∞  𝑏𝑛 Canergent, then ∃𝑡 = 𝑅, s.t ∑𝑛=1

∞  𝑏𝑛 = 𝑡 and ⟨𝑡𝑛⟩ → 𝑡 → Lim𝑛→∞ 𝑡𝑛 = 𝑡 

Lim𝑛→∞(𝑠𝑛 + 𝑡𝑛) → S + 𝑡, but ⟨𝑠𝑛 + 𝑡𝑛⟩ is the seq of partial sum of ∑𝑛=1
∞  (an + 𝑏𝑛) → 

∑𝑛=1
∞  𝑎𝑛+𝑏𝑛 = ∑𝑛+1

∞  𝑎𝑛+∑𝑛=1  𝑏𝑛 = 𝑠 + 𝑡 

 

(2) let ⟨𝑠𝑛⟩ be a seq of partial sums of ∑ 𝑎𝑛
∞
𝑛=1  but ∑𝑛=1

∞   𝑎𝑛  Convergent ⇒ ∃𝑠 ∈ ℝ s,t 

∑𝑛=1
∞  𝑎𝑛 = 𝑠 and ⟨Sn⟩ = S, lim𝑛→∞  𝑠𝑛 = 𝑆. 

, lim𝑛→∞  𝑘 𝑠𝑛 = 𝑘 , lim𝑛→∞  𝑠𝑛 = 𝑘𝑆 →  〈𝑘 𝑆𝑛〉 → 𝑘𝑠 

then ∑𝑛𝑠1

2  𝑘𝑎𝑛 = 𝑘𝑆 = 𝑘∑𝑛≤1
∞   

then ∑𝑛=1
∞  kan = 𝑘∑𝑛=1

∞  an   

 

 

 



 

 

Exercises 

(1) Given an example for two divergent Sories but their Sum is Convergent Series. 

Sol:  

let ∑𝑛=1
∞   = ∑𝑛=1

∞  
1

𝑛
 

and ∑𝑛=1
∞  𝑏𝑛 = ∑ −

1

n
∞
𝑛=1   

the ∑𝑛𝑠1
∞  (𝑎𝑛 + 𝑏𝑛) = ∑𝑛=1

∞  (
1

𝑛
−

1

𝑛
) = ∑𝑛=1

∞  0 = 0 con and 〈𝑎𝑛 + 𝑏𝑛〉 ⟶ 0 

Series test       اختبار المتسلسلات 

(1) Comparison test: 

Theorem: If 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 ∀ 𝑛 ∈ 𝑁, then  

(1) ∑𝑛=1
∞   bn convergent, then ∑𝑛=1

∞   an Canvergont 

(2) ∑𝑛=1
∞  𝑎𝑛 divergent, then ∑𝑛≤1

∞   bn divergent  

`of partial sums of ∑𝑛11
∞  𝑏𝑛 sina 0 ⩽ an ⩽ 𝑏𝑛, then 

𝑆𝑛 = 𝑎1 + 𝑎2 + 𝑎3 + ⋯ + 𝑎𝑛 

      ⩽ 𝑏1 + 𝑏2 + 𝑏3 + ⋯ + 𝑏𝑛 

= tn 
but ∑𝑛=1

∞  𝑏𝑛 Convergent, thei ⟨𝑡𝑛⟩ ⇒ t as 𝑛 → ∞ 𝑏𝑛 ⩾ 0 ⇒ ⟨ 𝑡𝑛 ⟩ increasing seq and 𝑡𝑛 ≤ 𝑡 , ∀𝑛 

and 𝑆𝑛 ⩽ 𝑡𝑛, ∀𝑛, the 𝑆𝑛 ⩽ 𝑡, S0 ⟨𝑠𝑛⟩ is bounded  

→ ⟨𝑆𝑛⟩ is bounded and increasing (mono ton) ⇒ ⟨sn⟩ Convergent sequence 

 ⇒ ∑𝑛𝑠
∞   an Cowlergint. 

(2) Suppose ∑𝑛=1
∞   bn Converyont  

by (1), ∑𝑛=1
∞   an Convergent and → 𝐶!, so ∑𝑛,1

∞  𝑏𝑛 divergent 

 

P – series  

∑𝑛=1
∞  

1

𝑛𝑝
, 𝑝 > 0. 

∑𝑛=1
∞  

1

𝑛𝑝
= 1 +

1

2𝑝
+

1

3p
+ ⋯ 

∑𝑛=1
∞  

1

𝑛𝑝
= {

 Canerge  if 𝑝 > 1
 diveng  if < 𝑝 ⩽ 1

 

 



 

 

Examples 

(0) ∑𝑛=1
∞  

1

5𝑛3
=

1

5
∑𝑛=1

∞  
1

𝑛3
, 𝑝 = 3 > 1 

then 𝑃 - Series → 𝑝 = 3⟩1, sa Caniergent 

(2) ∑𝑛  
1

√𝑛
= ∑𝑛=1

∞  
1

𝑛
1
𝑡

, 𝑝−1 1

2
< 1 

Then 𝑝 series, 𝑃 =
1

2
< 1, 𝑑 inevgent 

Theuron. 

let Lan and ∑𝑏𝑛 be posifive term Series s.t lim𝑛→∞  
𝑎𝑛

𝑏𝑛
= 𝐿 ≠ 0 

then  

Example: 

D) ∑∞  𝑛3 − 1 

𝑛 = 04𝑛5 − 3𝑛2 + 3 

𝑎𝑛 =
𝑛3−1

4𝑎5−3𝑛2+3
⩾ 0, choose bns 

1

𝑛2
 to Compave 

∑ thans ∑
1

𝑛2
 Convergant (𝑝-sories 𝑝 = 2 > 1) 

 lim
𝑛→∞

 
𝑎𝑛

𝑏𝑛
= 1in 

𝑛3 − 1

4𝑛5 − 3𝑛2 + 3
÷

1

𝑛2

 = lim
𝑛→∞

  =
𝑛5 − 𝑛2

4𝑛5 − 3𝑛2 + 3
= lim

𝑛→∞
 

𝑛5

𝑛5
−

𝑛2

𝑛5

4
𝑛5

𝑛5 − 3
𝑛2

𝑛5 +
3

𝑛5

 = 𝐿𝑛→∞

1 −
1

𝑛3

4 −
3

𝑛3 +
3

𝑛5

= Lim𝑛→∞ 
1

4
=

1

4
= 0

 

by theoramabove ∑𝑛=0
∞   an Convargant. 

(2∑𝑛=0
∞  

2𝑛 + 1

𝑛2 + 2𝑛 + 1
 

(3) Ratiotest) a.mil sl: in. 1 - If 𝑏 < 1 ⇒ ∑ an Cowergent. 

2 if ℎ > 1 ⇒ 2 an divergent. 

3 -if 𝑏 = 1 =⇒ no infurmations. 

Examples 

(1) ∑𝑛=0
∞  

2𝑛

𝑛!
 

(2) ∑𝑛<0
∞  

𝑛

3𝑛
, ⋯ ⋅ Convergant. 

(3) ∑𝑛≤0
2  𝑛2 

let 𝑎𝑛 = 𝑛2, 𝑎𝑛 + (𝑛 + 1)2 



 

𝐿𝑛→∞

𝑎𝑛 + 1

𝑎𝑛
= 1mim𝑛→∞ 

(𝑛 + 1)2

𝑛2
=

1, 𝑚
𝑛2 + 2𝑛 + 1

𝑛2

 
 

lim𝑛→∞  

𝑛2

𝑛2 +
2𝑛
𝑛2 +

1
𝑛2

𝑛2

𝑛2

= Lim𝑛→∞ 
1 +

2
𝑛

+
1
𝑛

2

=
1 

∴ 𝑏 = 1, 𝑏𝑤 + ∑𝑛=1
∞  𝑛2 is divergent 

(4)∑𝑛𝑖0
∞  

1

𝑛2
 

lel ans 
1

𝑛2
, − avit =

1

(𝑛+1)2
 

= Lim𝑛2+2𝑛+1 = lim𝑛→∞   (
1

1 + 0
) = Lim𝑛→∞ ∣= 1 

So 𝑏 = 1 

but ∑
1

𝑛2
 is Canventi, 5 ina 𝑝 = 2 > 1 

Theorem 

tet ∑𝑛+1
𝑚   be a series, 𝑎𝑥 > 0, ∀𝑛, if ∃𝑏 ∈ 𝑅 sit 

𝑛√𝑎𝑛 = 𝑏 

1 - if 𝑏 < 1 ⇒ \suman Comergent 

2 - if 𝑏 > 1 →  enp di 

3 if be1 ⇒ no is Por matios. 

Examples: Is the Pollowing Sarics Gurmergent? 

(1) ∑
5𝑛

2(3)𝑛
 

let 𝑎𝑖𝑛 =
5𝑛

2(3)
> 0 

lim𝑛  √
5𝑛

2(3)𝑛
= 𝐿 ⋅ 𝑚 − √

5

2
⋅

√𝑛
𝑛

√3𝑛3 = Lim𝑛 √
5

2
⋅

√𝑛

3
 = 1 ⋅

1

3
=

1

3
 

 = 1 ⋅
1

3
=

1

3

𝑏 =
1

3
⟨1 ⇒ ∑  

∞

𝑛=0

 𝑎𝑛  Convevgent. 

 Excersices: ∑  

𝑛

𝑛𝑠0
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Defintion The number 𝑒 

𝑒 = ∑  

∞

𝑛=0

1

𝑛!
= 1 +

1

1!
+

1

2!
+

1

3!
+ ⋯ 



 

Remark 

The Series ∑𝑛=0
∞  

1

𝑛!
 is Convergent Serice. 

prosp 𝑠𝑛 = 1 +
1

1!
+

1

2𝑡
+

1

𝑠𝑇
+ ⋯ +

𝑙

𝑛!
 

= 1 + 1 +
1

2 × 1
+

1

3 × 2 × 1
+

1

4 × 3 × 2𝑥1
+

1

𝑛!
 

= 1 + 1 +
1

2
+

1

6
+

1

24
+ ⋯ +

1

𝑛!
 

< 1 + 1 +
1

2
+

1

4
+

1

8
+ ⋯ +

1

2(𝑛−1)
 

= 1 + 1 +
1

2
+

1

𝑡2
+

1

23
+

11 + −1

𝑥𝑛−1
 

1/2

1/2
= 1 ⇒  sn ⟨𝑡 + 1 + 1 = 3 

∴ 𝑆𝑛⟨3 ⇒ ⟨𝑆𝑛⟩ boumided and incveasing ⇒ ⟨sn⟩ Canvevge 

Excersices 

prave that 𝑒 = lim𝑛→∞  (1 +
1

𝑛
) 

Example 

prove theat e is irpational Aumber 05 

Suppase e is ralional number ⇒ 3𝑚, 𝑛 > 0 sit 

𝑒 =
𝑚

𝑛
. 

∵ 𝑒 = ∑𝑛=0
∞  

1

𝑛!
⇒ 𝑆𝑛 = 1 + 1 +

1

2!
+

1

3!
+ ∞ +

1

𝑛!
 

𝑒 − 5𝑛 =
1

(𝑛 + 1)!
+

1

(𝑛 + 2)!
+

1

(𝑛 + 3)!
 

=
1

(𝑛 + 1)!
+

1

(𝑛 + 2)(𝑛 + 1)!
+

1

(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)!
+ 

=
1𝑥

(𝑛 + 1)!
[𝑖 +

1

(𝑛 + 2)
+

1

(𝑛 + 3)(𝑛 + 2)
+ ∞] 

<
1

(𝑛 + 1)!
[1 +

1

(𝑛 + 1)
+

1

(𝑛 + 1)2
+] 

=
1

(𝑛 + 1)!
,
𝑛 + 1

𝑛
=

1

𝑛 + 1)𝑛!
⋅

𝑛 + 1

𝑛
=

1

𝑛 ⋅ 𝑛!
 

(𝑛!)𝑒 ∈ 𝑁 since 𝑛𝑙1 = 𝑛!
𝑚

𝑛
= 𝑛(𝑛 − 1)!

𝑚

𝑛
 

= (𝑛 − 1)! 𝑚 ∈ 𝑁 

eand n!s 𝑛 = 𝑛! (1 + 1 +
1

2!
+

1

3!
+ ⋯ +

1

𝑛!
) 



 

= 𝑛! + 𝑛! +
𝑛1

2!
+

𝑛!

3!
+ ⋯ − 1 

Since 𝑛 ⩾ 1 ⇒ 3 natwal number (𝑒 − 5𝑛)𝑛! 

sil 0 < 𝑒 − 5𝑛 <
1

𝑛
< 1 by (1) −𝐶! 

e is inpational amariber 

 Alternating Series aj 23 4 𝑎 al 

 ∑  

∞

𝑛=1

  (−1)𝑛−1𝑎𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − 44 +

 or 𝑛=1(−1)𝑛+1𝑎𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − 𝑎4 + ⋯

 

Theoren (Alternating Series test) 

The series ∑𝑛=1
∞  (−2)𝑛−1𝑎𝑛 + is Convergent if 

(1) 𝑎𝑛 > 0, 𝑣𝑛 

(e) 𝑎𝑛+1 ⩽ 0, 𝑣𝑛 

(3) Lim an = 0 

Example Is the fallewing shries are Comergent. 

(1) ∑𝑛⩽1
∞  

(−1)𝑛

𝑛
= 1 −

1

2
+

1

3
−

1

4
+ ⋯ 

𝑎𝑛 =
1

𝑛
> 0, 𝑎𝑛 + 1 =

1

𝑛+1
<

1

𝑥
= 𝑎𝑛,  lim𝑛→∞  

1

𝑛
= 0 = ∑𝑛

𝑛  
(−1)𝑛

𝑛
 Gonvergent. 

8 

(2∑𝑛=1
∞  

(−1)𝑛

√𝑛
? 

Absolule and Comditional Convergencen) 

Pejintion (Absetutely Covergant) 

A series ∑ an is Called absolutely convergena is the associated series ∑ lanl Garvergent. 

Defintion (Conditionally Convergent). 

A series ∑𝑎𝑛 is guled Condilionally Convergenl if the sseciated series ∑𝑎   Covengentbut ∑ lanl 

divengent 

(1) lel ∑𝑎𝑛 = ∑𝑛=0
∞  

(−1)4

2𝑛
 

⇒ Σlan |= ∑𝑛=0
∞  |

(−𝑦)𝑛

2𝑛
∣= ∑𝑛=0

∞  
1

2𝑛
, Geometric saries  

(2) let ∑𝑎𝑥 = ∑𝑛=0
∞  

(−1)2

𝑛+1
 

i ∑𝑛=0
∞  

(−1)𝑛

𝑛+1
 not alosolutely Cowengent). 

∑𝑛=0
∞  

(−1)𝑛

𝑛 + 1
 



 

𝑎𝑛 =
𝑙

𝑛 + 1
, 𝑎𝑛71 =

1

𝑛 + 2
<

1

𝑛 + 1
= cm 

∴ ∑
∑(−1)𝑛

𝑛+1
 Conditiontity convergent 

Thearem 

⇒ ⟨5𝑛⟩ is Cauthy seq. 

If ⟨𝑡𝑛) is aseq if partial sions of \suman 

⇒ 𝑡𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 and 

⇒ ⟨ tn > canchy ser. 

⇒ ⟨𝑡𝑛⟩ convergent ⇒  2an Convengant  

If Eang 5 bn Cowvergant series. 

Is ∑𝑎𝑛 ⋅ ∑𝑏𝑛 − (𝑎𝑛 + 𝑎𝑛 + 𝑐) ⋅ (𝑙1 + 𝑏𝑖 + 

= 𝑎1(𝑏1 + 𝑏𝑡 + 𝑦) + 𝑎2(𝑏1 + 𝑏2𝑥) + ⋯ 

Camergent? 

Definitin( Cavshy produch of Series) 

let ∑𝑛=1
∞  , ∑𝑛

∞  𝑏𝑛 be twa Suries and 𝐶𝑛=∑𝑘𝑠
𝑛  𝑎𝑘𝑏𝑛−𝑘 = 𝑎10𝑏𝑛 + 𝑎1𝑏𝑛−1 + ⋯ + 𝑎𝑛𝑏0 

Exanple 

∑𝑛=0
∞  𝑎𝑛 + ∑𝑛>0

∞  𝑏𝑛 not Convergent 

= 1 − (
1

√2
+

1

√2
) + (

1

√3
+

1

√2
⋅

1

√2
+

1

√3
) 

(power Series 

A series of the form 

∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎𝑥 + 𝑎2𝑥2 + 93𝑥3 + ⋯ 

where 𝑥 ∈ 𝑅 is Called power scriesin 𝑥 

Exc shew that \sumx+rak ∑𝑛=0
∞  

𝑥𝑛

𝑛!
 is Convergant 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ي الختام نسأل الله التوفيق
 
 وف

 

ي عذابك
 اللهم قن 
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